Linear Algebra

1993

Let V be a vector space over the field of real numbers R.

- 1. Let V_1 and V_2 be sunspaces of V. Show that
 - (i) $V_1 \cap V_2$ is a subspace of V. (4%)
 - (ii) $V_1 + V_2$ is a subspace of V. (4%)
 - (iii) dim V_1 + dim V_2 = dim $(V_1 + V_2)$, provided that V is finite dimensional and $V_1 \cap V_2 = \{0\}$. (8%)
- 2. Suppose that $\{u,v\} \subset V$. Show that $\{u,v\}$ is linearly independent if and only if $\{2u+v,u-2v\}$ is linearly independent. (8%)
- 3. Let V be finite dimensional and $T: V \to V$ be linear. Show that T is one-to-one if and only if T is onto. You may apply the Dimension Theorem. (8%)
- 4. Let A be a real, symmetric matrix and $\lambda_1 \neq \lambda_2$ be two distinct eigenvalues of A. Let v_1 and v_2 be the eigenvectors corresponding to λ_1 and λ_2 , respectively. Show that v_1 and v_2 are orthogonal. (8%)
- 5. Let

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}.$$

Find an orthogonal matrix P and a diagonal matrix D such that $A = P^{T}DP$ where P^{T} denote the transpose of P. (10%)

國立成功大學ハナ二學年度 ^{應用数學} 考試(基礎數學 (B)-2 試題) 第2 頁

Probability

1. Let the pair of random variables (X, Y) has joint density function $f_{XY}(x, y) = 60x^2y$ on the triangle bounded by x = 0, y = 0 and y = 1 - x.

 $f_{XY}(x,y) = 60x^{2}y \text{ on the triangle bounds}$ $Consider Z = \begin{cases} \frac{X^{2}}{2Y} & \text{for } X \leq \frac{1}{2} \\ 2Y & \text{for } X > \frac{1}{2} \end{cases}$ (a) E[Y|X = x] (b) E[Z|X = x] (c) E[Z].

2. Suppose that $(X_1, \ldots, X_r) \sim M(n; p_1, \ldots, p_r)$ is multinomial distributed. Determine

(a) varX_r (b) $\operatorname{cov}(X_1, X_2)$. (10%)

(18%)

- 3. Let $\{X_i : i \ge 1\}$ be iid, with $E[X_i] = 0$, $var[X_i] = \sigma^2 > 0$. Let $Y_n = \sum_{i=1}^n X_i$. Prove that, for any c > 0, $\lim_{n \to \infty} P\{|Y_n| \ge c\} = 1$. (10%)
- 4. (a) Let $\{A_n\}$ be a sequence of events such that $\sum_{n=1}^{\infty} P(A_n) < \infty$. Let $A = \{\omega : \omega \in A_n \text{ for infinitely many } n\}$. Prove that P(A) = 0. (6%)
 - Let $A = \{\omega : \omega \in A_n \text{ for infinitely interference of the proof of$