國立成功大學八十二學年度 明究所 入學考試(數理統計 試題) 第 1 頁

1. (a) Let $X \sim N(\theta, \sigma^2)$, and let g ge a differentiable function satisfying $\mathbb{E}|g'(x)| < \infty$. Show that

$$E[g(x)(x-\theta)] = \sigma^2 E[g'(x)]. \tag{10\%}$$

- (b) Let X_1, \ldots, X_n be iid $N(\theta, 1)$. Show that the uniformly minimum variance unbiased estimator of θ^2 is $\bar{X}^2 \frac{1}{n}$. Calculate its variance, and show that it is greater than the Cramér-Rao Lower Bound. (10%)
- 2. (a) Suppose that X_1, \ldots, X_n has a joint $pdf \ f(x_1, \ldots, x_n; \theta)$. State the definition of the pivotal quantity. (5%)
 - (b) Consider a random sample from a Parato distribution, $X_i \sim PAR(1, \theta)$, i = 1, 2, ..., n, i.e. the pdf of X_i is $f(x_i; \theta) = \frac{\theta}{(1+x)^{\theta+1}}$, for x > 0, i > 0. Use the pivotal quantity method to find a $100(1-\alpha)\%$ confidence interval of θ . (15%)
- 3. Let X_1, \ldots, X_n be a random sample from the density

$$f(x|\theta) = \frac{1}{\theta} I_{(0,\theta)}(x).$$

Assume that a prior distribution of θ has a $pdf g(\theta) = I_{(0,1)}(\theta)$.

- (a) For the loss function $\ell(t,\theta) = (t-\theta)^2$, find the Bayes estimator of θ . (10%)
- (b) For the loss function $\ell(t,\theta) = \frac{(t-\theta)^2}{\theta^2}$, find the Bayes estimator of θ . (10%)
- 4. Let Σ_i be independently distributed as $N(i\Delta, 1)$, i = 1, 2, ..., n. Show that there exists a UMP test of $H_0: \Delta \leq 0$ against $H_a: \Delta > 0$, and determine it as explicity as possible. (20%)
- 5. Suppose that X is a continuous random variable with pdf

$$f(x; \theta) = \theta X^{\theta-1}$$
 if $0 < x < 1$, and zero otherwise.

- (a) Derive the generalized likelihood ratio test of $H_0: \theta = \theta_0$ against $H_a: \theta \neq \theta_0$ based on a random sample of size n. (10%)
- (b) Determine an approximate critical value for a size α test based on a large-sample approximation. (10%) 033