90 學年度國立成功大學應用數学為 高等微積分 試題 共之頁 第 / 頁

Advanced Calculus Entrance Exam

Spring 2001

(1) Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be given by $f(x, y) = (e^x \cos y, e^x \sin y)$.	
(i) Show that $Df(x, y)$ is invertible at every point of \mathbb{R}^2 .	5%
(ii) Show that f is not one-to-one.	5%
(iii) Does (i) and (ii) contradict the Inverse Function Theorem? Why?	5%

(2) Let R be a bounded closed set in \mathbb{R}^2 and C be the smooth boundary curve. The Green's second theorem states:

$$\iint_{R} (u\Delta w - w\Delta u) dx dy = \int_{C} \left(u \frac{dw}{dn} - w \frac{du}{dn} \right) ds.$$

where w, u are both C^2 functions on R.

- (i) How should you define the orientation of R, C and \vec{n} to make the formula 5% correct?
- (ii) How can you interpret this theorem as a formula for Integration by parts? 5%
- (iii) Let us define $\langle f,g \rangle_R = \iint_R f(x,y)g(x,y)dxdy$ for any $f,g \in \Omega$ where Ω is the vector space of all C^∞ functions whose directional derivatives in the direction of normal at all points of C vanish. A linear operator $L:\Omega \to \Omega$ is said to be self-adjoint if it satisfies $\langle Lf,g \rangle_R = \langle f,Lg \rangle_R$. Show that the Laplace Operator Δ is self-adjoint.
- (3) Let f be a continuous function of two variables (t, x) defined for $t \ge a$ and x in some compact set $S \subset \mathbb{R}$. Assume that the integral

$$\int_{a}^{\infty} f(t, x)dt = \lim_{B \to \infty} \int_{a}^{B} f(t, x)dt$$

converges uniformly for $x \in S$.

(i) Show that
$$g(x) = \int_a^\infty f(t, x) dt$$
 is continuous for $x \in S$.

(ii) Does $\int_0^\infty x e^{-tx} dt$ converge uniformly for $x \in [0, 1]$? Verify your answer.

(4) Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be an invertible linear mapping and \mathbf{B}_r be an n-dimensional 10% ball centered at 0 with radius r. Compute

$$\lim_{r\to\infty}\int_{T^{-1}(\mathbf{B}_r)}e^{-\langle T\mathbf{y},T\mathbf{y}\rangle}d\mathbf{y}.$$

(5) Let $u=(u_1,u_2,...,u_n)^t\in\mathbb{R}^n$; $f_j(u),j=1,2,...,q$ are continuously differentiable on \mathbb{R}^n . Consider

$$L_p(u,\lambda) = \sum_{j=1}^q \lambda_j f_j(u) - (1/p) \sum_{j=1}^q \lambda_j \ln \lambda_j,$$

where p > 0 and $\lambda \in \Delta = \{\lambda = (\lambda_1, \lambda_2, \dots, \lambda_q) \ge 0 | \sum_{j=1}^q \lambda_j = 1 \}$. Show that, for each fixed p > 0 and $u \in \mathbb{R}^n$, there is a unique optimal solution:

$$\lambda_j^*(u, p) = \exp(pf_j(u)) / \sum_{i=1}^q \exp(pf_j(u)), \ j = 1, 2, \dots, q.$$

that maximizes $L_p(u, \lambda)$ over $\lambda \in \Delta$.

(6) Let l be a positive integer. Define

$$\Phi(\theta) = \frac{1}{l} \sum_{m=1}^{l} \cos \theta_m,$$

(背面仍有題目,請繼續作答)

90 學年度國立成功大學 原用影響 為 高等微频分试题 共 2 頁

where $\theta = (\theta_1, \theta_2, \dots, \theta_l)$. Further define

$$p(n,x,y) = \frac{1}{(2\pi)^l} \int_Q e^{i < \theta, (x-y) > \Phi^n(\theta)} d\theta,$$

where $x, y \in \mathbb{R}^l$, $Q = \{\theta | -\pi \le \theta_m \le \pi, \forall m = 1, 2, ..., l\}$ and $\{\theta, (x - y) > \text{is the usual inner product in } \mathbb{R}^l$. Consider

$$g(x,y) = \sum_{n=0}^{\infty} p(n,x,y).$$

(i) Show that $g(x,y) \leq \frac{1}{(2\pi)^l} \int_Q \frac{d\theta}{1 - |\Phi(\theta)|}$.

10%

(ii) Show that, there exists a neighborhood U of the point $\theta = (0, 0, ..., 0)$ in 10% which

$$\int_{U} \frac{d\theta}{1 - |\Phi(\theta)|} < \int_{U} \frac{4ld\theta}{\theta_1^2 + \theta_2^2 + \dots + \theta_l^2}$$

(Hint: Use the first two terms of Taylor's expansion for each $\cos \theta_i$.)

(iii) Use (ii) to show that $g(x,y) < \infty$ for $l \ge 3$. (You may first try l = 3 using Spherical Coordinates)