國立成功大學九十五學年度碩士班招生考試試題

編號: 6 46 系所: 數學系應用數學

科目:高等微積分

本試題是否可以使用計算機: □可使用 , ☑不可使用 (請命題老師勾選)

- 1. (10 points) Let $g_n: I = [0,1] \to \mathbb{R}$ be defined by $g_n(x) = \frac{1}{nx+1}$. Determine whether g_n converge on I = [0,1] and, if it converges, determine whether the convergence is uniform.
- 2. (10 points) Let $f: I = [a, b] \to \mathbb{R}$ be (Riemann) integrable on I and assume that f is continuous at $c \in (a, b)$. Prove that $\lim_{r \to 0} \frac{1}{2r} \int_{c-r}^{c+r} f(x) dx = f(c)$.
- 3. (10 points) Let D be the rectangle in $\mathbb{R} \times \mathbb{R}$ given by $D = \{(x,t) | a \le x \le b, c \le t \le d\}$. Let f and its partial derivative f_t be continuous functions defined on D, and F be a function defined on [c,d] given by $F(t) = \int_a^b f(x,t) dx$. Prove that F has a derivative on [c,d] and $F'(t) = \int_a^b f_t(x,t) dx$.
- 4. Let $\sup S$ denotes the supremum (or the least upper bound) of S, and $\inf S$ denotes the infimum (or the greatest lower bound) of S.
 - (a) (6 points) Let I = (a, b) be an open interval in \mathbb{R} , and let f and g be continuous functions defined on I. Prove that the function $h: I \to \mathbb{R}$ defined by $h(x) = \sup\{f(x), g(x)\}$ is continuous on I.
 - (b) (6 points) Let X and Y be non-empty sets and let $f: X \times Y \to \mathbb{R}$ have bounded range in \mathbb{R} . Prove that $\sup_{y} \inf_{x} f(x,y) \leq \inf_{x} \sup_{y} f(x,y)$.
- 5. Let $F: \mathbb{R}^5 \to \mathbb{R}^2$ be defined by $F(u, v, w, x, y) = (uy + vx + w + x^2, uvw + x + y + 1)$, and note that F(2, 1, 0, -1, 0) = (0, 0).
 - (a) (6 points) Show that we can solve F(u, v, w, x, y) = (0, 0) for (x, y) in terms of (u, v, w) near (2, 1, 0).
 - (b) (6 points) If $(x,y) = \phi(u,v,w)$ is the solution of the preceding part, show that $D\phi(2,1,0)$ is given by the matrix $-\begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 0 & -1 & -3 \\ 0 & 1 & -3 \end{pmatrix}$.
- 6. (10 points) Define a sequence of real numbers (x_n) by $x_0 = 1$, and $x_{n+1} = \frac{1}{2 + x_n}$, for $n \ge 0$. Show that (x_n) converges and compute its limit. [Hint: Use the contraction principle.]
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with $\lim_{x \to \infty} f(x) = 0$.
 - (a) (10 points) Show that there exists a sequence $x_n \to \infty$ with $\lim_{n \to \infty} f'(x_n) = 0$.
 - (b) (6 points) Show that it is not necessarily true that f'(x) is bounded.
- 8. Let $f_n: \mathbb{R} \to \mathbb{R}$ be differentiable for each n, so that

$$|f'_n(x)| \le 1$$
, for all $x \in \mathbb{R}$, $n = 1, 2, \cdots$.

- (a) (6 points) Prove that the set $\{f_n\}$ is uniformly equicontinuous on \mathbb{R} . [Hint: A set \mathscr{F} of functions on K to \mathbb{R}^n is said to be uniformly equicontinuous on K if, for each $\varepsilon > 0$ there is a $\delta(\varepsilon) > 0$ such that if $x, y \in K$ and $||x-y|| < \delta(\varepsilon)$ and $f \in \mathscr{F}$, then $||f(x)-f(y)|| < \varepsilon$.]
- (b) (6 points) For each n, let $\tilde{f}_n(x) = f_n(x) f_n(0)$. Prove that $\{\tilde{f}_n\}$ is uniformly bounded on any closed interval $[a,b] \subset \mathbb{R}$.
- (c) (8 points) Suppose that $g: \mathbb{R} \to \mathbb{R}$ is such that for each $x \in \mathbb{R}$, $\lim_{n \to \infty} f_n(x) = g(x)$. Prove that g is continuous.