編號: 48

國立成功大學九十八學年度碩士班招生考試試題

共2頁,第/頁

系所組別: 數學系應用數學

考試科目: 高等微積分

<u>考試日期:0307</u>,節次:3

※ 考生請注意:本試題 □可 ☑不可 使用計算機

We will use the following notations:

 \mathbb{R} : the set of all real numbers.

 \mathbb{N} : the set of all positive integers.

 $\sup S$: the least upper bound of the set S such that $S \subseteq \mathbb{R}$.

ln(x): the natural logarithm function.

Please answer all questions (100%)

1. (20%)

- (a) (2%) State the definition of compact subset of \mathbb{R}^n .
- (b) (5%) Prove that every compact subset of \mathbb{R}^n is closed and bounded.
- (c) (5%) Let K be a compact set in \mathbb{R} . Prove that there is an element $c \in K$ such that $c = \sup\{x \mid x \in K\}$.
- (d) (8%) Prove or disprove that every bounded sequence of elements in \mathbb{R} has a convergent subsequence.
- 2. (20%) Let $g:[2,\infty) \longrightarrow \mathbb{R}$ be a function defined by $g(x) = \frac{x}{\ln(x)}$.
 - (a) (4%) State the definition of uniformly continuous function.
 - (b) (8%) Prove or disprove that g is uniformly continuous on $[2, \infty)$.
 - (c) (8%) Let f be a real valued function defined on a bounded subset H of \mathbb{R} . Assume that f is uniformly continuous on H. Prove or disprove that the image of f is a bounded subset of \mathbb{R} .
- 3. (12%) Let $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ be a function defined by $\varphi(x) = \int_0^{x+e^x} \sin(xt^2) dt$.
 - (a) (5%) State the fundamental theorem of calculus.
 - (b) (7%) Compute $\varphi'(0)$.
- 4. (10%) Let $f:[1,\infty) \longrightarrow \mathbb{R}$ be a function.
 - (a) (2%) State the definition of convergence of the improper integral $\int_{1}^{\infty} f(x) dx$.
 - (b) (8%)Prove or disprove that the improper integral $\int_{1}^{\infty} \frac{\sqrt{\ln(x)}}{x^2} dx$ is convergent.
- 5. (10%) For each $n \in \mathbb{N}$, let $f_n : \left[\frac{-1}{3}, \frac{1}{3}\right] \longrightarrow \mathbb{R}$ be a function defined by $f_n(x) = \sqrt{\frac{1-x^n}{1-x}}$.
 - (a) (2%) State the definition of the uniform convergence of the sequence of functions $\{f_n\}_{n=1}^{\infty}$.
 - (b) (8%) Prove or disprove that the sequence $\{f_n\}_{n=1}^{\infty}$ of functions converges uniformly on $\left[\frac{-1}{3}, \frac{1}{3}\right]$.

編號: 48

國立成功大學九十八學年度碩士班招生考試試題

共7頁第2頁

系所組別: 數學系應用數學

考試科目: 高等微積分

考試日期:0307,節次:3

※ 考生請注意:本試題 □可 ☑不可 使用計算機

6. (10%) Let $\{z_n\}_{n=1}^{\infty}$ be a bound sequence of real numbers.

- (a) (1%) State the definition of the lower limit $\liminf_{n\to\infty} z_n$ of the sequence $\{z_n\}_{n=1}^{\infty}$.
- (b) (1%) State the definition of the upper limit $\limsup_{n\to\infty} z_n$ of the sequence $\{z_n\}_{n=1}^{\infty}$.
- (c) (8%) Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be two bound sequences of real numbers. Prove that

$$\liminf_{n\to\infty} x_n + \liminf_{n\to\infty} y_n \leq \liminf_{n\to\infty} (x_n + y_n) \leq \liminf_{n\to\infty} x_n + \limsup_{n\to\infty} y_n.$$

7. (18%) Let f and g be two real valued functions defined on a nonempty open subset D of \mathbb{R}^n . Assume that f, g and their partial derivatives are continuous on D. Let $S = \{x \in D \mid g(x) = 0\}$ and $c \in S$. Assume that $\nabla g(c) \neq 0$ and f takes its minimum value among all points of S at the point c. Prove that there is $\lambda \in \mathbb{R}$ such that $\nabla f(c) = \lambda \nabla g(c)$. (Here ∇h denote the gradient of the function h.)