共2頁,第1頁

系所組別 · 數學系應用數學 考試科目 高等微積分

细糖: 39

考録日期:0306·16次:3

※ 考生請注意:本試費 □可 □不可 使用計算機

Instructions:

R: the set of all real numbers.

N: the set of all positive integers.

You can use any common notations, such as $\lim_{n\to\infty}$ or $\limsup_{n\to\infty}$, $\sup S_1$ etc.

1. (20%)

- (a) Find the limit inferior and limit superior of the sequences {a_n} and {b_n}, where $a_n = \frac{1 - 3(-1)^n n}{4n + 2}$ and $b_n = [1 + (-1)^n] \sin \frac{n\pi}{4}$, for $n \in \mathbb{N}$.
- (b) Find the infimum and supremum of the sets of real numbers S and T, where $S = \{x > 0 : 3x^2 - 8x - 3 \le 0\}$ and $T = \{\frac{\sin x}{\pi} : 0 < x \le \frac{\pi}{3}\}$.
- (15%) A sequence {a_n} is called contractive if there exists r, 0 < r < 1, such that $|a_{n+1}-a_n| \le r|a_n-a_{n-1}|$, for all $n \ge 2$. Let $\{b_n\}$ be a sequence satisfying

$$b_{n+1} = \frac{1}{2}(b_n^2 + 1)$$
, for $n \ge 1$,

and $0 < b_1 < 1$.

- (a) Prove that the sequence {b_n} is contractive.
- (b) Show that lim b_π exists (this is difficult) and find the limit b (this is easy).
- (c) Take $b_1=\frac{1}{n}$. Determine the minimum n such that $|b-b_n|<10^{-3}$.
- 3. (14%) Prove or disprove that the following functions are uniformly continuous via $\varepsilon - \delta$ argument.
 - (a) $f(x) = x^2$, on R.
 - (b) $g(x) = \frac{1}{x}$, on $[\frac{1}{2}, 1]$.
- 4. (14%) Prove or disprove that the following sequences of functions are uniformly convergent.

(a) For
$$n \in \mathbb{N}$$
, $f_n(x) = \frac{n^2 \ln x}{x^n}$, $x \in [2, \infty)$.

(b) For n ∈ N, q_n(x) are defined on [0, 1] by

$$g_n(x) = \left\{ \begin{array}{ll} n^2 x, & 0 < x < 1/n \\ 2n - n^2 x, & 1/n \le x < 2/n \\ 0, & 2/n \le x < 1. \end{array} \right.$$

網號:

國立成功大學九十九學年度碩士班招生考試試題

共 2 頁・第2頁

系所組別: 數學系應用數學

考試日期:0306·節次:3

考試科目: 高等微積分

※ 考生請注意:本試題 □可 ☑不可 使用計算機

5. (15%)

- (a) Evaluate the integrals $\int_0^\infty \int_0^1 e^{-xy} xye^{-xy} \, dy \, dx$ and $\int_0^1 \int_0^\infty e^{-xy} xye^{-xy} \, dx \, dy.$
- (b) Why are the above two integrals different?
- 6. (10%)
 - (a) Let f: S → R^m be a function defined on an open set S ⊂ Rⁿ with vector-values in R^m. What is the definition that the function f is differentiable at c ∈ S and denote the total derivative by Df(c).
 - (b) Suppose $f: \mathbb{R}^2 \to \mathbb{R}^3$ is defined by

$$f(x, y) = (\sin x \cos y, \sin(x + y), \cos xy).$$

Determine the total derivative Df(x, y).

7. (12%) Let
$$\zeta(s,a) = \sum_{n=0}^{\infty} (n+a)^{-s}, \ 0 < a \le 1, s > 1.$$

(a) Show that the series converges absolutely and prove that

$$\sum_{k=0}^{k} \zeta(s, \frac{h}{k}) = k^{s} \zeta(s)$$
, if $k = 1, 2, ..., k = 1, 2, ...$

where $\zeta(s) = \zeta(s, 1)$ is the Riemann zeta function.

(b) For
$$s > 1$$
, prove that $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n^s} = (1 - 2^{1-s})\zeta(s)$.