系所組別:光電科學與工程研究所甲、乙組

考試科目: 工程數學

45

※ 考生請注意:本試題 ☑可 □不可 使用計算機

1. The first six Legendre polynomials are

 $P_0(x) = 1, P_1(x) = x$ $P_2(x) = \frac{1}{2}(3x^2 - 1), P_3(x) = \frac{1}{2}(5x^3 - 3x)$ $P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3), P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x)$

Find the first three positive values of λ for which the problem $(1 - x^2)y' - 2xy' + \lambda y = 0$

y(0) = 0, y(x), y'(x) bounded on [-1,1]

has nontrivial solutions (solutions other than y(x)=0). (10%)

2. The square error of a function *F* relative to a function *f* on the interval $-\pi \le x \le \pi$ is defined as

 $E = \int_{-\pi}^{\pi} (f - F)^2 dx$

Suppose we want to minimize the square error of a function $F=a+b\sin x$ (a and b are constants) relative to $f(x)=x+\pi$ ($-\pi < x < \pi$), what are the best choices of constants a and b that give the smallest square error? (10%)

- 3. Solve 2y'' + ty' 2y = 10, y(0) = y'(0) = 0
 - (a) Find the Laplace transform of the differential equation.
 - (b) Solve the 1st-order equation from (a).
 - (c) Solve y(t) by finding the inverse Laplace transform of the solution in(b).

(10%)

4. Solve

$$\frac{1}{2}\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \quad x > 0, \quad t > 0$$
$$\frac{\partial u}{\partial x}\Big|_{x=0} = 0, \quad t > 0$$
$$u(x,0) = e^{-2x}, \quad x > 0$$
(10%)

5. Find the eigenvalues and eigenfunctions of the boundary value problem $y' + \lambda y = 0$, y'(0) = 0, y'(L) = 0 (10%)

(背面仍有題目,請繼續作答)

編號: 4	45	國立成功大學一○○學年度碩士班招生考試試題	共之〕	頁 [,] 第 2 頁
系所組別:	光	:電科學與工程研究所甲、乙組		
考試科目:	I	程數學	考試日期:02	19・節次:3
※ 考生請	注意	看:本試題 ☑可 □不可 使用計算機		
	6.	The set B = { u_1, u_2, u_3 }, where $u_1 = \langle 1, 1, 1 \rangle, u_2 = \langle 1, 2, 2 \rangle, u_3 = \langle 1, 1, 0 \rangle$ is the basis for R^3 . Transform B into an orthonormal basis B". (10%)		
	7.	Use the inverse of the matrix A to solve the system AX=B ,		
		where $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix}$, and the vector \mathbf{B} is given by $\begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}$ (10%)		
	8.	Evaluate the integral $\iint_R \left(\sqrt{(x-y)^2 + 2(x+y) + 1}\right)^{-1} dA$		
		where R is the region bounded by the graphs of $y = x$, $x = 2$, and $y = 0$ by	у	
		means of the change of variables $x = u + uv$, $y = v + uv$. (10%)		
	9.	Expand $f(z) = \frac{2}{z^2 - 4z + 3}$ in an appropriate series valid for		
		(a) $ z > 3$; (b) $0 < z - 1 < 2$ (10%)		
	1	0. Let $f(z) = z^n g(z)$, where <i>n</i> is a positive integer, $g(z)$ is entire, and		
	-	$g(z) \neq 0$ for all z. Let C be a circle with center at the origin.		
		Evaluate $\oint_C \frac{f'(z)}{f(z)} dz$ (10%)		
		Evaluate $\Psi_C = \frac{f(z)}{f(z)}$ (10.70)		