系所組別：光電科學與工程研究所甲，乙組

考試科目：工程數學

※ 考生請注意：本試題 ■可 \square 不可 使用計算機

1.

The first six Legendre polynomials are

$$
\begin{array}{ll}
P_{0}(x)=1, & P_{1}(x)=x \\
P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), & P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right), & P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
\end{array}
$$

Find the first three positive values of λ for which the problem
$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0$
$y(0)=0, y(x), y^{\prime}(x)$ bounded on $[-1,1]$
has nontrivial solutions（solutions other than $y(x)=0) . \quad(10 \%)$

2．The square error of a function F relative to a function f on the interval $-\pi \leq \mathrm{x} \leq \pi$ is defined as
$E=\int_{-\pi}^{\pi}(f-F)^{2} d x$
Suppose we want to minimize the square error of a function $F=a+b \sin x(a$ and b are constants）relative to $f(x)=x+\pi(-\pi<x<\pi)$ ，what are the best choices of constants a and b that give the smallest square error？

3．Solve $2 y^{\prime \prime}+t y^{\prime}-2 y=10, y(0)=y^{\prime}(0)=0$
（a）Find the Laplace transform of the differential equation．
（b）Solve the $1^{\text {st－order equation from（a）．}}$
（c）Solve $y(t)$ by finding the inverse Laplace transform of the solution in （b）．

4．Solve
$\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, x>0, t>0$
$\left.\frac{\partial u}{\partial x}\right|_{x=0}=0, \quad t>0$
$u(x, 0)=e^{-2 x}, x>0$

5．Find the eigenvalues and eigenfunctions of the boundary value problem $y^{\prime}+\lambda y=0, \quad y^{\prime}(0)=0, y^{\prime}(L)=0$

系所組別：光電科學與工程研究所甲，乙組

※ 考生請注意：本試題－可 口不可 使用計算機

6．The set $\mathrm{B}=\left\{u_{1}, u_{2}, u_{3}\right\}$ ，where

$$
u_{1}=\langle 1,1,1\rangle, u_{2}=\langle 1,2,2\rangle, u_{3}=\langle 1,1,0\rangle
$$

is the basis for R^{3} ．Transform B into an orthonormal basis $\mathrm{B}^{\prime \prime}$ ．（10\％）

7．Use the inverse of the matrix A to solve the system $A X=B$ ，
where $\mathbf{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 1 & 2\end{array}\right)$ ，and the vector \mathbf{B} is given by $\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)(10 \%)$

8．Evaluate the integral $\iint_{R}\left(\sqrt{(x-y)^{2}+2(x+y)+1}\right)^{-1} d A$ where R is the region bounded by the graphs of $y=x, x=2$ ，and $y=0$ by means of the change of variables $x=u+u v, y=v+u v$ ．（10\％）

9．Expand $f(z)=\frac{2}{z^{2}-4 z+3}$ in an appropriate series valid for
（a）$|z|>3$ ；（b） $0<|z-1|<2$

10．Let $f(\mathrm{z})=z^{n} g(z)$ ，where n is a positive integer，$g(\mathrm{z})$ is entire，and $g(z) \neq 0$ for all z ．Let C be a circle with center at the origin．
Evaluate $\oint_{C} \frac{f^{\prime}(z)}{f(z)} d z$

