1．（ 6% ）A light source with wavelength λ illuminates a metal and ejects photoelectron of a maximum kinetic energy of 1 eV ．Another light source with wavelength $\lambda / 2$ ejects photoelectron of a maximum kinetic energy of 4 eV ．What is the work function（in eV ）of the metal？

2．（ 4% ）（a）Show that the energy－momentum relationship given by $E^{2}=p^{2} c^{2}+\left(m c^{2}\right)^{2}$ follows from the expression $E=\gamma \mathrm{mc}^{2}$ and $p=\gamma \mathrm{mv}$ ，where γ is $\frac{1}{\sqrt{1-v^{2} / c^{2}}}$
（ 4% ）（b）The total energy of a proton is three times of its rest energy．Find the proton＇s rest energy（in eV ）and its moving speed．
（ 4% ）（c）Determine the kinetic energy of the proton in electron volts．
（ 6% ）（d）What is the proton＇s momentum（in eV / c ）？
［Mass of proton $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}, \sqrt{2}=1.414$ ］

3．（ 6% ）Calculate the de Broglie wavelength（in meter）of a $74-\mathrm{kg}$ person who is running at a speed of $5.0 \mathrm{~m} / \mathrm{s}$ ．$\left[\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right]$

4．（4\％）（a）Use Stefan＇s Law to calculate the total power radiation per unit area by a filament at a temperature of 3000 K assuming the filament is an ideal radiator．$\left[\sigma=5.7 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}\right]$
（ 4% ）（b）Assume that the sum radiates as a black body with a surface temperature of 5800 K ．Use Wien＇s displacement law to show the peak（in nm）of the solar spectrum．［Wien＇s displacement constant $=2.898 \times 10^{-3} \mathrm{mK}$ ］
（ 4% ）（c）What is the average energy \bar{E}（in KT）of an oscillator that has a frequency $h v=K T$ according to Planck＇s calculation？$[\mathrm{e}=2.718]$

5．（4\％）（a）What is the electronic configuration（ground state）of element Al （aluminum）whose atomic number $Z=13$ ．
（ 4% ）（b）What are the quantum numbers（ $\mathrm{n}, \mathrm{l}, \mathrm{m}, \mathrm{s}$ ）for the electron at the out most orbital？

6．A free particle of mass m with wave number k_{1} is traveling to the right．At $x=0$ ， the potential jumps from zero to V_{0} and remains at this value for positive x ．
（ 4% ）（a）If the total energy is $E=2 V_{0}$ ，what is the wave number k_{2} in the region $x>0$ ？Express your answer in terms of k_{1} and V_{0} ．
（ 8% ）（b）Calculate the reflection coefficient R and the transmission coefficient T ．
$(4 \%)(c)$ What is the probability current carried by this particle？
7．(8%) What are the possible values of the total angular momentum of an electron in a d state（the $\ell=2$ state）？What are the angles between the spin and the orbital angular momentum？Please also compute the magnitude of the spin and orbital angular momenta．
（ 8% ）In a carbon atom，only the two $2 p$ electrons contribute to its angular momentum．The ground state of this atom is ${ }^{3} \mathrm{P}_{0}$ ，and the first four excited states，in order of increasing energy，are ${ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2},{ }^{1} \mathrm{D}_{2},{ }^{1} \mathrm{~S}_{0}$ ．（a）Give the \mathbf{L} ， \mathbf{S}, \mathbf{J} values for each of these five states．（b）Why do you think the ${ }^{3} \mathrm{P}_{0}$ state is the ground state？

8．（ 3% ）（a）If $\psi_{\alpha}(1)$ represents particle 1 in the α state，use this representation to write normalized wave function for a system of three particles，when these three particles are Fermions．
（ 3% ）（b）What is Fermi－Dirac distribution？
（ 6% ）（c）A metal of volume V contains N electrons．The number of quantum states in an energy interval E to $\mathrm{E}+\mathrm{dE}$ is given by $g(E) d E=\frac{8 \sqrt{2} \pi V \mathrm{~m}^{3 / 2}}{\mathrm{~h}^{3}} \sqrt{E} d E$ ．Please derive the Fermi energy．
（6\％）（d）Following（b）and（c），please derive the average energy of an electron at $\mathrm{T}=0 \mathrm{~K}$ ．

