編號:	44	國立成功大學一〇一學年度碩士班招生考試試題	共 3 頁,第/頁
系所組別	:	光電科學與工程學系乙組	
考試科目	:	電子學	考試日期:0226,節次:1

- Consider the circuit of Fig. 1 with V_{BB}=1.7 V, R_B=100kΩ, V_{CC}=10 V, and R_C=5 kΩ. Let the transistor β=100. The input signal v_i is a triangular wave of 0.4 V peak-peak. (a) Find approximate values for the peak-to-peak amplitude of i_b and of v_{be}. (10%) (b) What is the voltage gain of the amplifier? (10%)
- 2. The amplifier of Fig. 2 consists of two identical common-emitter amplifiers connected in cascade. For $V_{CC}=15$ V, $R_1=100$ k Ω , $R_2=47$ k Ω , $R_E=3.9$ k Ω , $R_C=6.8$ k Ω , $R_{sig}=5$ k Ω , and $R_L=2$ k Ω , find the overall voltage gain $\upsilon_0/\upsilon_{sig}$. (20%)
- 3. (a) Please use the power supply, capacitance and resistance to design a band pass filler circuit (10%).

Fig. 1

(背面仍有題目,請繼續作答)

编號: 44	國立成功大學一〇一學年度碩士班招生考試試題	共 3 頁·第2頁
系所組別:光電	፪科學與工程學系乙組	
考試科目: 電子	2學	考試日期:0226 , 節次:1

4. Figure 3 shows a MOSFETs differential circuit. Q_1 and Q_2 are matched. Q_3 in the circuit operated in the triode region. Please find

- (a) With $v_{G1}=v_{G2}=0$, and assuming Q_1 and Q_2 are in saturation, what dc voltages appear at the sources of Q_1 and Q_2 . Please express the dc voltages in terms of the overdrive voltage V_{0V} at which each of Q_1 and Q_2 operates, and V_t .
- (b) For the situation in (a), what current flows in Q_3 ? What overdrive voltage V_{0V3} is Q_3 operating at, in terms of V_C , V_{0V} , and V_t ?
- (c) For $v_{G1}=v_{id}/2$, and $v_{G2}=-v_{id}/2$ where v_{id} is a small signal please describe the status of the Q₃. Now if all transistors have the same W/L, express r_{DS} of Q₃ in terms of Vov, Vov3, and $g_{m1,2}$.

(25%)

Fig. 3

5. Figure 4 shows an amplifier formed by cascading two CS stages. Each of Q_1 and Q_2 is operated at an overdrive voltage of 0.2V and $|V_A|=10V$. The transistor capacitances are as follows: $C_{gs}=20$ fF, $C_{gd}=5$ fF, and $C_{db}=5$ fF

(a) Find the dc voltage gain.

(b) Find the input capacitance at the gate of Q_1 , using the Miller approximation.

- (c) Use the capacitance in (b) to determine the frequency of the pole formed at the amplifier input. Let $R_{sig}=10k\Omega$.
- (d) Use the Miller approximation to find the input capacitance of Q_2 and hence determine the total capacitance at the drain of Q_1 .
- (e) Use the capacitance found in (d) to get the frequency of the pole formed at the interface between the two stages.
- (f) Determine the total capacitance at the output node and find the frequency of the pole formed at the output node.

(g) Does the amplifier have a dominant pole? If so, at what frequency?(25%)

Fig. 4