1．Consider the circuit of Fig． 1 with $\mathrm{V}_{\mathrm{BB}}=1.7 \mathrm{~V}, \mathrm{R}_{\mathrm{B}}=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ ，and $\mathrm{R}_{\mathrm{C}}=5$ $\mathrm{k} \Omega$ ．Let the transistor $\beta=100$ ．The input signal v_{i} is a triangular wave of 0.4 V peak－peak．（a）Find approximate values for the peak－to－peak amplitude of i_{b} and of $v_{\text {be．}}(10 \%)$（b）What is the voltage gain of the amplifier？（ 10% ）
2．The amplifier of Fig． 2 consists of two identical common－emitter amplifiers connected in cascade．For $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{1}=100 \mathrm{k} \Omega, \mathrm{R}_{2}=47 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=3.9 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=6.8$ $\mathrm{k} \Omega, \mathrm{R}_{\text {sig }}=5 \mathrm{k} \Omega$ ，and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ ，find the overall voltage gain $v_{0} / v_{\text {sig．}}$ ． 20% ）
3．（a）Please use the power supply，capacitance and resistance to design a band pass filler circuit（ 10% ）．

Fig． 1

Fig． 2

4．Figure 3 shows a MOSFETs differential circuit．Q_{1} and Q_{2} are matched．Q_{3} in the circuit operated in the triode region．Please find
（a）With $v_{G_{1}}=v_{G 2}=0$ ，and assuming Q_{1} and Q_{2} are in saturation，what $d c$ voltages appear at the sources of Q_{1} and Q_{2} ．Please express the dc voltages in terms of the overdrive voltage $V_{0 V}$ at which each of Q_{1} and Q_{2} operates， and V_{t} ．
（b）For the situation in（a），what current flows in Q_{3} ？What overdrive voltage $V_{\text {ov3 }}$ is Q_{3} operating at，in terms of $V_{G}, V_{o v}$ ，and V_{t} ？
（c）For $v_{\mathrm{G} 1}=\mathrm{v}_{\mathrm{ld}} / 2$ ，and $\mathrm{v}_{\mathrm{G} 2}=-\mathrm{v}_{\mathrm{id}} / 2$ where v_{id} is a small signal please describe the status of the Q_{3} ．Now if all transistors have the same W / L ，express $r_{D S}$ of Q_{3} in terms of $V_{o v}, V_{o v 3}$ ，and $g_{m 1,2}$ ．
（25\％）

Fig． 3

5．Figure 4 shows an amplifier formed by cascading two $C S$ stages．Each of Q_{1} and Q_{2} is operated at an overdrive voltage of 0.2 V and $\left|\mathrm{V}_{\mathrm{A}}\right|=10 \mathrm{~V}$ ．The transistor capacitances are as follows： $\mathrm{C}_{\mathrm{gs}}=20 \mathrm{fF}, \mathrm{C}_{\mathrm{gd}}=5 \mathrm{fF}$ ，and $\mathrm{C}_{\mathrm{db}}=5 \mathrm{fF}$
（a）Find the dc voltage gain．
（b）Find the input capacitance at the gate of Q_{1} ，using the Miller approximation．
（c）Use the capacitance in（b）to determine the frequency of the pole formed at the amplifier input．Let $\mathrm{R}_{\mathrm{sig}}=10 \mathrm{k} \Omega$ ．
（d）Use the Miller approximation to find the input capacitance of Q_{2} and hence determine the total capacitance at the drain of Q_{1} ．
（e）Use the capacitance found in（d）to get the frequency of the pole formed at the interface between the two stages．
（f）Determine the total capacitance at the output node and find the frequency of the pole formed at the output node．
（g）Does the amplifier have a dominant pole？If so，at what frequency？ （25\％）

Fig． 4

