## 系所組別：光電科學與工程學系甲，乙組

1．For the initial value problem $y^{\prime \prime}+4 y=t, y(0)=1, y^{\prime}(0)=-2$
（1）Find the Green＇s function $G(t, \tau)$ for the differential equation using Laplace transform． （10\％）
（2）Using the result of（1），solve the initial value problem using $G(t, \tau)$ ．（10\％）

2．For the Strum－Liouville problem $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$ on the interval $[-1,1]$
（1）Find its eigenvalues and eigenfunctions．（5\％）
（2）The set of eigenfunctions are orthogonal with respect to a weight function $p(x)$ on the interval $[-1,1]$ ，what is $p(\mathrm{x}) ?(5 \%)$

3．The Fourier transform $\hat{f}(\omega)$ of a function $f(x)$ is given in the figure below，find $f(x)$ ．（ $10 \%$ ）


4．Consider a discrete function $f[k]=\cos \left(w_{0} k\right)(k=0, \pm 1, \pm 2, \ldots), w_{0}=2 \pi / N$
（1）What is the fundamental period of $f l k]$ ？（5\％）
（2）The discrete Fourier transform of $f[k]$ can be written as $\sum_{n=0}^{N-1} c_{n} e^{i n \omega_{0} k}$ ，find $c_{1}$ and $c_{2}$ ．（5\％）

5．A function $w(x, y)$ is continuous and has continuous first and second partial derivatives in a domain of the xy－plane containing a region $R$ ．Let $R$ be a closed bounded region in the $x y$－plane whose boundary C consists of finitely smooth curve．The vector $\vec{n}$ is a unit normal vector to C and has $\vec{r}^{\prime} \cdot \vec{n}=0$ ，where $\vec{r}$ is the parametric representation of $\mathrm{C}, \mathrm{ds}$ is the linear element of C and $\vec{r}^{\prime}=d \vec{r} / d s$ ．Using Green＇s Theorem，show that
$\iint_{R}\left(\nabla^{2} w\right) d x d y=\oint_{C} \frac{\partial w}{\partial n} d s .(15 \%)$

6．Verify that $u(x, y)=\ln |z|$ is harmonic，and find a corresponding analytic function $f(x, y)=u(x, y)+i v(x, y)$ with complex number $z=x+i y .(12 \%)$

7．Find the center and the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n!}{n^{n}}(z+1)^{n} .(8 \%)$

8．Find the Cauchy principal value of $\int_{-\infty}^{\infty} \frac{\cos (m x)}{x^{4}-1} d x$ ，where $m$ is a constant．（ $15 \%$ ）

