编號:	46	國立成功大學一〇一學年度碩士班招生考試試題	共3頁,	第 頁
系所組別	:	光電科學與工程學系甲、乙組		
考試科目	:	電磁學	考試日期:0226	• 節火:2

- 1. A cylindrical capacitor consists of an inner conductor of radius a and an outer conductor whose inner radius is b, as shown below. The space between the conductors is filled with a dielectric of permittivity ε , and the length of the capacitor is L. Assume the outer conductor is grounded and that the inner conductor is maintained at V_0 . (15%)
 - (a) Determine the electric field intensity $\overline{E}(a)$ at the surface of the inner conductor. (7%)

(b) With the inner radius, b, fixed, find a so that $\vec{E}(a)$ is minimized and the value of $\vec{E}(a)$. (5%)

(c) Determine the capacitance under the conditions of part (b). (3%)

2. Consider the rectangular region shown below as the cross section of an enclosure formed by four conducting planes. All planes are assumed to be infinite in extent in the z-direction. Determine the electric potential distribution within this region if the left and right planes are grounded and the top and bottom plates are kept at constant potentials V_1 and V_2 , respectively. (17%).

3. Helmholtz coils shown below are used to obtain an approximately uniform magnetic field in the midpoint region. They consist of two identical coaxial coils separated by a distance d. Each coil has a radius of b and contains N turns. A current I flows in each coil in the same direction. (18%)

(背面仍有題目,請繼續作答)

编號:	46	■	共 <u>3</u> 頁,第2頁
系所組別:	:)	光電科學與工程學系甲、乙組	
考試科目:		電磁學	考試日期:0226, 節次:2

- (a) Find the magnetic flux density at a point on the axis between the coils. Start from finding the magnetic flux density at a point on the axis of one coil turn.
 (8%)
- (b) Find the condition(s) required to obtain an approximately uniform magnetic field in the midpoint region. Start from Taylor-expanding the expression of the magnetic flux density found in (a) around the midpoint to the second order. (6%)
- (c) What is the magnetic flux density at the midpoint if the condition(s) found in (b) is/are satisfied?
 (4%)

- 4. (a) Write down the *time varying Maxwell equations* in differential form with current J and charge density ρ. (5%)
 - (b) From (a), derive the non-homogeneous wave equation for vector potential A and scalar potential V. Specify the gauge you used. (5%)
- 5. The electric field intensity of a linearly polarized uniform plane wave propagating in the +z direction in seawater is $\mathbf{E} = \hat{x}100 \cos(2 \times 10^{7} \pi t) \left[\frac{V}{m}\right]$ at z = 0. The seawater can be considered as *a good conductor* with $\varepsilon_{\rm r} = 72$, $\mu_{\rm r} = 1$ and $\sigma = 4$ (S/m). $\mu_{0} = 4\pi \times 10^{-7}$, $\varepsilon_{0} = (1/36\pi) \times 10^{-9}$. Determine the attenuation constant α , phase constant β , intrinsic impedance $\eta_{\rm c}$, phase velocity $u_{\rm p}$, wavelength λ , and skin depth δ . (You are required to write the expression and numbers) (15%)
- 6. TM modes propagate in the z-direction of a dielectric slab waveguide with dielectric material ε_d of thickness d surrounding by air ε_0 . From $\frac{d^2}{dv^2}E_z^0 + h^2E_z^0 = 0$ where $h^2 = \gamma^2 + k^2 = (j\beta)^2 + \omega^2\mu\varepsilon$,

 E_z has a form $E_z^0(y) = E_0 \sin(k_y y) + E_e \cos(k_y y)$ $|y| \le \frac{d}{2}$ inside the dielectric slab and

编號: 46

國立成功大學一〇一學年度碩士班招生考試試題

系所組別: 光電科學與工程學系甲、乙組

考試科目: 電磁學

共入頁,第入頁

$$E_{z}^{0}(y) = \begin{cases} C_{u}e^{-\alpha(y-\frac{d}{2})} & y \ge \frac{d}{2} \\ C_{l}e^{+\alpha(y+\frac{d}{2})} & y \le \frac{d}{2} \end{cases} \text{ outside the dielectric slab waveguide.}$$
(15%)

(a) Find
$$k_y^2 + \alpha^2 = ?$$
 (3%)

(b) Using the boundary condition at y = d/2, -d/2 for E_z , find the expression of $E_z^0 E_y^0 H_x^0$ both inside (-d/2 < y < d/2) and outside (y > d/2) for odd TM mode and even TM mode. (5%)

(c) With H_x boundary condition at y = d/2, -d/2, we can get $\frac{\alpha}{k_y} = \frac{\varepsilon_0}{\varepsilon_d} \tan(\frac{k_y d}{2})$ for odd TM mode

and $\frac{\alpha}{k_y} = -\frac{\varepsilon_0}{\varepsilon_d} \cot(\frac{k_y d}{2})$ for even TM mode. What is the cutoff frequency for odd TM1 and

even TM₁ mode for d = 1um and $\varepsilon_d = 4$ $(1/\sqrt{\mu_0 \varepsilon_0} = c = 3 \times 10^8 m/s)$. (3%)

- (d) If we put a PEC plate at y = 0, what are the cut-off frequency of the first f_{c1} and second f_{c2} modes. (4%)
- 7. If the cubic cavity resonator with size a is cut by half as a right triangular cavity resonator. What is the resonate frequency of the first mode? (Hint: this can be considered as a superposition of two rectangular cavity modes, such that all the parallel E fields at the edges of the triangle vanish.) (10%)

