1．A cylindrical capacitor consists of an inner conductor of radius a and an outer conductor whose inner radius is b ，as shown below．The space between the conductors is filled with a dielectric of permittivity ε ，and the length of the capacitor is L ．Assume the outer conductor is grounded and that the inner conductor is maintained at V_{0} ．
（a）Determine the electric field intensity $\vec{E}(a)$ at the surface of the inner conductor．
（b）With the inner radius，b ，fixed，find a so that $\vec{E}(a)$ is minimized and the value of $\vec{E}(a)$ ．
（c）Determine the capacitance under the conditions of part（b）．

2．Consider the rectangular region shown below as the cross section of an enclosure formed by four conducting planes．All planes are assumed to be infinite in extent in the z－direction．Determine the electric potential distribution within this region if the left and right planes are grounded and the top and bottom plates are kept at constant potentials V_{1} and V_{2} ，respectively．
（17\％）．

3．Helmholtz coils shown below are used to obtain an approximately uniform magnetic field in the midpoint region．They consist of two identical coaxial coils separated by a distance d ．Each coil has a radius of b and contains N turns．A current I flows in each coil in the same direction．
（a）Find the magnetic flux density at a point on the axis between the coils．Start from finding the magnetic flux density at a point on the axis of one coil turn．
（b）Find the condition（s）required to obtain an approximately uniform magnetic field in the midpoint region．Start from Taylor－expanding the expression of the magnetic flux density found in（a） around the midpoint to the second order．
（c）What is the magnetic flux density at the midpoint if the condition（s）found in（b）is／are satisfied？ （4\％）

4．（a）Write down the time varying Maxwell equations in differential form with current J and charge density ρ ．
（b）From（a），derive the non－homogeneous wave equation for vector potential A and scalar potential V ．Specify the gauge you used．

5．The electric field intensity of a linearly polarized uniform plane wave propagating in the +z direction in seawater is $\mathbf{E}=\hat{x} 100 \cos \left(2 \times 10^{7} \pi t\right)\left[\frac{V}{m}\right]$ at $\mathrm{z}=0$ ．The seawater can be considered as a good conductor with $\varepsilon_{\mathrm{r}}=72, \mu_{\mathrm{r}}=1$ and $\sigma=4(\mathrm{~S} / \mathrm{m}) . \mu_{0}=4 \pi \times 10^{-7}, \varepsilon_{0}=(1 / 36 \pi) \times 10^{-9}$ ．Determine the attenuation constant α ，phase constant β ，intrinsic impedance η_{c} ，phase velocity u_{p} ，wavelength λ ， and skin depth δ ．（You are required to write the expression and numbers）

6．TM modes propagate in the z－direction of a dielectric slab waveguide with dielectric material ε_{d} of thickness d surrounding by air ε_{0} ．From $\frac{d^{2}}{d y^{2}} E_{z}^{0}+h^{2} E_{z}^{0}=0$ where $h^{2}=\gamma^{2}+k^{2}=(j \beta)^{2}+\omega^{2} \mu \varepsilon$ ， E_{z} has a form $E_{z}^{0}(y)=E_{0} \sin \left(k_{y} y\right)+E_{e} \cos \left(k_{y} y\right) \quad|y| \leq \frac{d}{2}$ inside the dielectric slab and
$E_{z}^{0}(y)=\left\{\begin{array}{ll}C_{u} e^{-\alpha\left(y-\frac{d}{2}\right)} & y \geq \frac{d}{2} \\ C_{l} e^{+\alpha\left(y+\frac{d}{2}\right)} & y \leq \frac{d}{2}\end{array}\right.$ outside the dielectric slab waveguide．
（a）Find $k_{y}^{2}+\alpha^{2}=$ ？
（b）Using the boundary condition at $\mathrm{y}=\mathrm{d} / 2,-\mathrm{d} / 2$ for E_{z} ，find the expression of $E_{z}^{0} E_{y}^{0} H_{x}^{0}$ both inside（ $-\mathrm{d} / 2<\mathrm{y}<\mathrm{d} / 2$ ）and outside（ $\mathrm{y}>\mathrm{d} / 2$ ）for odd TM mode and even TM mode．
（c）With H_{x} boundary condition at $\mathrm{y}=\mathrm{d} / 2,-\mathrm{d} / 2$ ，we can get $\frac{\alpha}{k_{y}}=\frac{\varepsilon_{0}}{\varepsilon_{d}} \tan \left(\frac{k_{y} d}{2}\right)$ for odd TM mode and $\frac{\alpha}{k_{y}}=-\frac{\varepsilon_{0}}{\varepsilon_{d}} \cot \left(\frac{k_{y} d}{2}\right)$ for even TM mode．What is the cutoff frequency for odd TM1 and even TM_{1} mode for $\mathrm{d}=1 \mathrm{um}$ and $\varepsilon_{\mathrm{d}}=4 \quad\left(1 / \sqrt{\mu_{0} \varepsilon_{0}}=c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$ ．
（d）If we put a PEC plate at $\mathrm{y}=0$ ，what are the cut－off frequency of the first $f_{\mathrm{c} 1}$ and second $f_{\mathrm{c} 2}$ modes． （4\％）

7．If the cubic cavity resonator with size a is cut by half as a right triangular cavity resonator．What is the resonate frequency of the first mode？（Hint：this can be considered as a superposition of two rectangular cavity modes，such that all the parallel E fields at the edges of the triangle vanish．） （10\％）

