編號: 44 國立成功大學 102 學年度碩士班招生考試試題	
系所組別:光電科學與工程學系甲、乙組	
考試科目:工程數學	考試日期:0224,節次:3

- ※ 考生請注意:本試題不可使用計算機
 - 1. (12%) The temperature u(r) in the circular ring shown in Fig. 1 is determined from the boundary-value problem

$$r \frac{d^2 u}{dr^2} + \frac{du}{dr} = 0$$
, $u(a) = u_0$, $u(b) = u_1$,

where u_0 and u_1 are constants. Please solve for u(r).

2. (12%) Compute the Fourier series components for the periodic function shown in Fig. 2 and express this function as a Fourier series.

3. (14%) A string is stretched and secured on the x-axis at x = 0 and $x = \pi$ for t > 0. If the transverse vibrations take place in a medium that imparts a resistance proportional to the instantaneous velocity, then the wave equation takes on the form

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \frac{\partial^2 \mathbf{u}}{\partial t^2} + 2\beta \frac{\partial \mathbf{u}}{\partial t}, \quad 0 < \beta < 1, \quad t > 0.$$

Find the displacement u(x,t) if the sting starts from rest and from the initial displacement f(x).

4. (12%) The differential equation $m \frac{d^2 x}{dt^2} + b \frac{dx}{dt} + kx = 0$ can be used to describe a damped simple

harmonic motion. Its solution can be written as the form of $x(t) = x_m e^{-\alpha t} \cos(\omega t + \phi)$, where x_m is the amplitude of the damped oscillator. Please solve this differential equation and find the α and ω in terms of m, b, k.

(背面仍有題目,請繼續作答)

國立成功大學 102 學年度碩士班招生考試試題 編號: 44 共2頁,第2頁 系所組別:光電科學與工程學系甲、乙組 考試科目:工程數學 考試日期:0224,節次:3 ※ 考生請注意:本試題不可使用計算機 5. (5%)(1) $\vec{F} = [\sin^2 x, -y\sin 2x, 5z]$, S the surface of the box $|x| \le a$, $|y| \le b$, $|z| \le c$. Please evaluate the integral $\iint \vec{F} \cdot \vec{n} \, dA$. (5 %) (2) $\vec{F} = [y, z^2, x^3]$, C the intersection of $x^2 + y^2 = 1$ and z = y + 1. Please evaluate the integral $\oint_{C} \vec{F} \cdot \vec{r}' ds$. (The line integral is clockwise as seen by a person standing at the origin.) (5%) (3) Please find a parametric representation of the following curve: Circle $\frac{1}{2}x^2 + y^2 = 1$, z = y. 6. (5%) (a) Please give the definitions of Hermitian, Skew-Hermitian, and Unitary Matrices. (5%) (b) Please prove that the eigenvalues of a skew-Hermitian matrix are pure imaginary or zero. 7. (5%) (a) Please find all the singular points and the corresponding residues for $\frac{\sin z}{z^6}$. (5 %) (b) Please find the Cauchy principal value for $\int_{-\infty}^{\infty} \frac{x+5}{x^3-x} dx$ (5 %) (c) Please integrate $\frac{\cos z}{z^n}$ for n = 1, 2, counterclockwise around C: |z|=1. 8. (5 %) (a) Find and sketch or graph the image of the given region under the given mapping. Region: $\ln 3 < x < \ln 5$, mapping: $w = e^z$ (z = x + i y). (5%) (b) Find all points at which the mapping $z^2 + az + b$ are not conformal (z = x + iy).