※ 考生請注意：本試題不可使用計算機

1．（12\％）The temperature $u(r)$ in the circular ring shown in Fig． 1 is determined from the boundary－value problem
$\mathrm{r} \frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dr}^{2}}+\frac{\mathrm{du}}{\mathrm{dr}}=0, \quad \mathrm{u}(\mathrm{a})=\mathrm{u}_{0}, \quad \mathrm{u}(\mathrm{b})=\mathrm{u}_{1}$,
where u_{0} and u_{1} are constants．Please solve for $u(r)$ ．

Fig． 1

2．（12\％）Compute the Fourier series components for the periodic function shown in Fig． 2 and express this function as a Fourier series．

Fig． 2
3．（14\％）A string is stretched and secured on the x－axis at $x=0$ and $x=\pi$ for $t>0$ ．If the transverse vibrations take place in a medium that imparts a resistance proportional to the instantaneous velocity， then the wave equation takes on the form
$\frac{\partial^{2} u}{\partial \mathrm{x}^{2}}=\frac{\partial^{2} u}{\partial \mathrm{t}^{2}}+2 \beta \frac{\partial \mathrm{u}}{\partial \mathrm{t}}, \quad 0<\beta<1, \mathrm{t}>0$.
Find the displacement $u(x, t)$ if the sting starts from rest and from the initial displacement $f(x)$ ．

4．（12\％）The differential equation $m \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+\mathrm{b} \frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{kx}=0$ can be used to describe a damped simple harmonic motion．Its solution can be written as the form of $\mathrm{x}(\mathrm{t})=\mathrm{x}_{\mathrm{m}} \mathrm{e}^{-\alpha t} \cos (\omega \mathrm{t}+\phi)$ ，where x_{m} is the amplitude of the damped oscillator．Please solve this differential equation and find the α and ω in terms of m, b, k ．
※ 考生請注意：本試題不可使用計算機

5．（5\％）（1）$\vec{F}=\left[\sin ^{2} x,-y \sin 2 x, 5 z\right]$ ，S the surface of the box $|x| \leq a,|y| \leq b,|z| \leq c$ ．Please evaluate the integral $\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{n}} \mathrm{dA}$ ．
（5 \％）（2）$\vec{F}=\left[y, z^{2}, x^{3}\right], \quad C$ the intersection of $x^{2}+y^{2}=1$ and $z=y+1$ ．Please evaluate the integral $\oint \vec{F} \cdot \vec{r}^{\prime}$ ds．（The line integral is clockwise as seen by a person standing at the origin．）
（5\％）（3）Please find a parametric representation of the following curve：
Circle $\frac{1}{2} x^{2}+y^{2}=1, z=y$.

6．（5 \％）（a）Please give the definitions of Hermitian，Skew－Hermitian，and Unitary Matrices．
（ 5% ）（b）Please prove that the eigenvalues of a skew－Hermitian matrix are pure imaginary or zero．

7．（5\％）（a）Please find all the singular points and the corresponding residues for $\frac{\sin z}{z^{6}}$ ．
（5\％）（b）Please find the Cauchy principal value for $\int_{-\infty}^{\infty} \frac{x+5}{x^{3}-x} d x$
$(5 \%)(c)$ Please integrate $\frac{\cos Z}{z^{n}}$ for $n=1,2, \ldots$. counterclockwise around $C:|z|=1$ ．

8．（ 5% ）（a）Find and sketch or graph the image of the given region under the given mapping．
Region： $\ln 3<x<\ln 5$ ，mapping：$w=e^{z} \quad(z=x+i y)$ ．
（ 5% ）（b）Find all points at which the mapping $z^{2}+a z+b$ are not conformal $(z=x+i y)$ ．

