編號: 42

## 國立成功大學 103 學年度碩士班招生考試試題

共 2 頁,第1頁

系所組別:光電科學與工程學系甲組

考試科目:近代物理

考試日期:0223,節次:1

※考生請注意:本試題不可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

(1) (10 %) (Energy and Momentum in Relativity) (1-A) (5 %) please derive  $E^2 = (mc^2)^2 + p^2c^2$ . (Total Energy  $E = mc^2/(1-v^2/c^2)^{1/2}$ ;  $p = mv/(1-v^2/c^2)^{1/2}$ )

(1-B) (5 %) Please reduce the relation of the E and P to  $E=p^2/2m+mc^2$  for a non-relativistic case, for V<<c.

(2) (10 %) (photoelectric effect)

(2-A) (4 %) Please explain photoelectric effect. ( $hv=KE_{max}+\phi$ )

(2-B) (3 %) Please find the wavelength and frequency of a 200-MeV photon.

(2-C) (3 %) The maximum wavelength for photoelectric emission in tungsten is 230 nm. What wavelength of light must be used in order for electrons with a maximum energy of 1.5 eV to be ejected?

3. (10 %) (Uncertainty Principle)

(3-A) (3 %) An hydrogen atom is 5.3x10<sup>-11</sup> m in radius. Use the uncertainty principle to estimate the minimum energy an electron can have in this motion.

(3-B) (3 %) Compare the uncertainties in the velocities of an electron and a proton confined in a 2.00-nm box. (3-C) (4 %) Explain why the matter wave of a particle is represented by a wave packet rather than a single wave?

4. (10 %) (Atom and Atomic Spectrum)

(4-A) (5 %) In the Bohr model, the electron is in constant motion. How can such an electron have a negative amount of energy?

(4-B) (5 %) An electron collides with a hydrogen atom in its ground state and excites it to a state of n=2. How much energy was given to the hydrogen atom in the inelastic collision?

5. (10 %) (The Lasers)

(5-A) (6 %) Please use the energy level diagram to explain the "absorption", "stimulated emission", and "spontaneous emission".

(5-B) (4 %) Please describe the 3-level laser and 4-level laser systems.

(背面仍有題目,請繼續作答)

編號: 42 國立成功大學 103 學年度碩士班招生考試試題 共 2 頁, 第 2 頁 系所組別:光電科學與工程學系甲組 考試科目:近代物理 考試品期: 0223, 節次:1

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 6. Please explain "tunnel effect". (5%) The scanning tunneling microscope (STM) is based on this effect. For a one dimension guantum barrier, the approximate transmission probability is

$$T = e^{-2\frac{\sqrt{2m(U-E)}}{\hbar}}$$

If the electron energy is 1 eV, the barrier is 10 eV high and 1 nm wide, please estimate the transmission probability. (5%)

7. For the hydrogen atom, if the wave function is  $\varphi$ , what is the actual probability of finding it in the

infinitesimal volume element dV. (5%) If the electron is on 1s orbit ( $\varphi = \frac{e^{-r/a_0}}{\sqrt{\pi a_0^{3/2}}}$ ), please show the

expectation value of 1/r. (5%)

8. What is the "spin-orbit coupling" in an atom? (5%) If the spin-orbit energy shift is

 $\langle V_{SL} \rangle = E_0 \frac{Z^4 \alpha^2}{n^3} \frac{j(j+1) - l(l+1) - \frac{3}{4}}{l(l+1)(2l+1)}$ 

, for n = 2 and l = 1 in the hydrogen atom, please estimate the energy difference of the two shifts. (5%)

9. What is "Fermi energy"? (5%) Please draw the distribution function under the

temperature T = 0,  $T \ll T_F$ ,  $T \gg T_F$  where  $T_F \equiv \frac{\varepsilon_F}{k_B}$ . (5%)

10. (a) Please prove that for the free electron system, the Fermi energy is

 $\mathcal{E}_{F} = \frac{\hbar^{2}}{2m} \left(\frac{3N}{8\pi V}\right)^{2/3}$  where  $\frac{N}{V}$  is the density of free electrons. (5%)

(b) Please use (a) to estimate the Fermi energy of gold (density is 19.3 g/cm<sup>3</sup>, atomic weight: 196.96) (5%)

*m*: electron mass =  $9.109 \times 10^{-31}$  kg

 $\alpha$ : fine structure constant =1/137

 $E_0$ : Rydberg energy unit = 13.6 eV

```
h:Planck's constant =6.626x10<sup>-34</sup> J-s
eV=1.602x10<sup>-19</sup> J
```