※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
一，問答題（不須計算過程，請於答案卷上按順序標示題號並鴧入答案）
1．(20%) A skydiver and his equipment together weigh 192 pounds．Before the parachute is opened，there is an air drag equal to six times his velocity．Four seconds $(t=4 \mathrm{~s})$ after stepping from the plane，the skydiver opens the parachute，producing an air drag equal to three times the square of the velocity．The free－fall acceleration is $32 \mathrm{ft} / \mathrm{s}^{2}$ ．Please answer the following questions：
（a）What is the velocity of the skydiver，$v(t)$ ，for $t \leq 4 \mathrm{~s}$ ？（ 4% ）
（b）What is the distance that the skydiver has fallen，$s(t)$ ，for $t \leq 4 \mathrm{~s}$ ？（3\％）
（c）What is the velocity of the skydiver，$v(t)$ ，for $t \geq 4 \mathrm{~s}$ ．（8\％）
（d）What is the distance that the skydiver has fallen，$s(t)$ ，for $t \geq 4 \mathrm{~s}$ ？（5\％）
2．（4\％）
If $a^{2}+b^{2}+c^{2}=16, x^{2}+y^{2}+z^{2}=6$ ，and a, b, c, x, y, z are all real number，
what is the maximum for $\left|\begin{array}{ccc}2 & 1 & 1 \\ a & b & c \\ x & y & z\end{array}\right|$ ？
3．（4\％）
What is the curvature of a circle with radius of a ？（express the answer as a function of a ）

4．（4\％）
Find the unit normal to the surface $2 x^{2}+4 y z-5 z^{2}=-10$ at the point of $P(3,-1,2)=$ ？

5．（4\％）
Find the volume of the region bounded by the parabolic cylinders $z=4-x^{2}$ and the planes：$x=0, y=0, y=6, z=0$

6．（4\％）
$f=\frac{\ln e^{2 x+2 y}}{r^{3}}$. Where r is the distance between point (x, y, z) and the origin
$(0,0,0)$. Find $\nabla \times \nabla f=$?

7．（4\％）
Find the parabola $y=a x^{2}+b x+c$ that is closet（least square error）to the data points of $(-2,0),(-1,0),(0,1),(1,0),(2,0)$ ．
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。 8．（4\％）

$$
\text { Find the function } f=? \text { such that } \nabla f=\left(3 x^{2}+y^{3}+y e^{x y}\right) \vec{i}+\left(-2 y^{2}+3 x y^{2}+x e^{x y}\right) \vec{j}
$$

二，計算題（須計算過程，請於答案卷上按順序標示題號並作答）

1．（ 15% ）An object with a 16 －pound weight is suspended from a spring，stretching it $8 / 11$ feet．Then the object is submerged in a fluid that imposes a drag of $2 v$ pounds and v is the velocity of the object．The entire system is subjected to an external forces $F(t)=4 \cos (\omega t)$ ．Let $y(t)$ be the displacement of the object from the equilibrium position $(y=0)$ at time t ．
（a）Find the displacement of the object in function of time，that is，$y(t) .(10 \%)$
（b）Determine the value of ω that maximize the amplitude of the steady－state oscillation．（5\％）
2．（15\％）Determine the Fourier series representation of the steady－state current $i(t)$ in the following $R L C$ circuit （resistance $\mathrm{R}=500 \Omega$ ，inductance $\mathrm{L}=5 \mathrm{H}$ ，capacitance $\mathrm{C}=0.2 \mu \mathrm{~F}$ ）if the applied electromotive force is $E(t)$ $=|10 \sin (800 \pi t)|$ ．

3．（12\％）
Use the figure below to evaluate the integral ：

$$
\int_{0}^{2} \int_{x}^{\sqrt{8-x^{2}}} \frac{1}{5+x^{2}+y^{2}} d y d x
$$

4．（10\％）
Find the（a）eigenvalues and（b）eigenvectors of matrix $A=\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$

