	<u> </u>	
编號: 44 國立成功大學 103 學年度碩士班招生考試試題	共 2 頁, 第 1 頁	
系所組別:光電科學與工程學系甲、乙組 考試科目:工程數學	考試日期:0223,節次:3	
→試料日·工程数学 ※考生請注意:本試題不可使用計算機。請於答案卷(卡)作答,於本試題紙		
一、問答題 (不須計算過程,請於答案卷上按順序標示題號並寫入答案)		
1. (20%) A skydiver and his equipment together weigh 192 pounds. Before the parachute is opened, there is an		
air drag equal to six times his velocity. Four seconds ($t = 4$ s) after stepping from the plane, the skydiver		
opens the parachute, producing an air drag equal to three times the square of the velocity. The free-fall acceleration is 32 ft/s^2 . Please answer the following questions:		
(a) What is the velocity of the skydiver, $v(t)$, for $t \le 4$ s? (4%)		
(b) What is the distance that the skydiver has fallen, $s(t)$, for $t \le 4$ s? (3%)		
(c) What is the velocity of the skydiver, $v(t)$, for $t \ge 4$ s. (8%)		
(d) What is the distance that the skydiver has fallen, $s(t)$, for $t \ge 4$ s? (5%)		
2. (4%)		
If $a^2 + b^2 + c^2 = 16$, $x^2 + y^2 + z^2 = 6$, and a, b, c, x, y, z are all real number,		
11 u + v + c = 10, x + y + z = 0, and u, v, c, x, y, z are an real number,		
what is the maximum for $\begin{vmatrix} 2 & 1 & 1 \\ a & b & c \\ x & y & z \end{vmatrix}$?		
what is the maximum for $a + b = c$?		
3. (4%)		
What is the curvature of a circle with radius of a ? (express the answer as a		
function of a)		
4. (4%)		
Find the unit normal to the surface $2x^2 + 4yz - 5z^2 = -10$ at the point of		
P(3, -1, 2) = ?		
5. (4%)		
Find the volume of the region bounded by the parabolic cylinders $z = 4 - x^2$		
and the planes: $x = 0, y = 0, y = 6, z = 0$		
6. (4%)		
$f = \frac{\ln e^{2x+2y}}{r^3}$. Where r is the distance between point (x, y, z) and the origin		
$(0,0,0)$. Find $\nabla \times \nabla f = ?$		
7. (4%)		
Find the parabola $y = ax^2 + bx + c$ that is closet (least square error) to the data		
points of $(-2, 0)$, $(-1, 0)$, $(0, 1)$, $(1, 0)$, $(2, 0)$.		
Points of (2,0), (1,0), (0,1), (1,0), (2,0).		

(背面仍有題目,請繼續作答)

编號: 44 國立成功大學 103 學	年度碩士班招生考試試題	共2頁,第2頁
系所組別:光電科學與工程學系甲、乙組		
考試科目:工程數學		考試日期:0223,節次:3
※考生請注意:本試題不可使用計算機。	請於答案卷(卡)作答,於本試題約	低上作答者,不予計分。
8. (4%)		
Find the function $f = ?$ such that $\nabla f = (3x^2 + y^3 + ye^{xy})\vec{i} + (-2y^2 + 3xy^2 + xe^{xy})\vec{j}$		

二、計算題 (須計算過程,請於答案卷上按順序標示題號並作答)

- 1. (15%) An object with a 16-pound weight is suspended from a spring, stretching it 8/11 feet. Then the object is submerged in a fluid that imposes a drag of 2v pounds and v is the velocity of the object. The entire system is subjected to an external forces $F(t) = 4\cos(\omega t)$. Let y(t) be the displacement of the object from the equilibrium position (y = 0) at time t.
 - (a) Find the displacement of the object in function of time, that is, y(t). (10%)

(b) Determine the value of ω that maximize the amplitude of the steady-state oscillation. (5%)

2. (15%) Determine the Fourier series representation of the steady-state current i(t) in the following *RLC* circuit (resistance R = 500 Ω , inductance L = 5 H, capacitance C = 0.2 μ F) if the applied electromotive force is $E(t) = |10\sin(800\pi t)|$.

3. (12%)

Use the figure below to evaluate the integral :

$$\int_0^2 \int_x^{\sqrt{8-x^2}} \frac{1}{5+x^2+y^2} dy dx$$

4. (10%)

Find the (a) eigenvalues and (b) eigenvectors of matrix $A = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$