第1頁，共3頁
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
A lot of useful physical constants are shown as below：

Speed of light in vacuum
Planck constamt
Planck constant divided by $2 \pi$
Electronic charge（absolute value）
Fine structure constant
Elcetron mass
Proton mass
Bohr magneton
Nuclear magneton
Bohr radius
Rydberg constant
Boltzmam constant
Electron voll and temperature
Gravitational constant

$$
\begin{aligned}
& \mathrm{r}=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} . \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& \hbar=1.055 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& q_{\mathrm{c}}=1.602 \times 10^{-19} \mathrm{C} \\
& \alpha=q_{\mathrm{c}}^{2} /\left(4 \pi \varepsilon_{0} h c\right)=\epsilon^{2} /(h c)=1 / 137 \\
& m_{\mathrm{c}}=9.11 \times 10^{-31} \mathrm{~kg}=0.511 \mathrm{MeV}^{-2} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}=938 \mathrm{MeV} \mathrm{c}^{-2} \\
& \mu_{\mathrm{B}}=4_{\mathrm{c}} h /\left(2 \mathrm{~m}_{\mathrm{c}}\right)=5.79 \times 10^{-5} \mathrm{eVT}^{-1} \\
& \mu_{\mathrm{N}}=\psi_{\mathrm{e}} \hbar /\left(2 m_{\mathrm{p}}\right)=3.15 \times 10^{-8} \mathrm{eV} \mathrm{~T}^{-1} \\
& a_{0}=\hbar^{2} /\left(m_{c} c^{2}\right)=0.529 \times 10^{-8} \mathrm{~m} \\
& R_{\infty}=m_{\mathrm{e}} \mathrm{e}^{4} /\left(2 \hbar^{2}\right)=13.61 \mathrm{eV} \\
& k_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}=k_{\mathrm{B}} \times 11600 \mathrm{~K} \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}
\end{aligned}
$$

1．（a）Please write down the ground state electron configuration of element Silicon．（3\％）（b）What are the numbers of electrons in a filled shell with principle quantum number of $n$ ？（3\％）（c）Please list all the available quantum numbers（ $\mathrm{n}, 1, \mathrm{~m}_{1}, \mathrm{~m}_{\mathrm{s}}$ ）of the $3 p$ subshell level．（4\％）

2．（a）Please draw the distribution probability function for the three statistics（Maxwell Boltzmann， Bose－Einstein，and Femi－Dirac）on the plot below．（6\％）


On the plot， $\mathrm{N}_{\mathrm{i}}$ is number of particles on the $i$－th energy level， $\mathrm{g}_{\mathrm{i}}$ is the quantum states of the $i-t h$ energy level， $\mathrm{E}_{\mathrm{i}}$ is the $i-t h$ energy level，and u is chemical potential
（b）For a system at equilibrium having 6 particles with fixed energy（ $U=E_{0}+3 E_{1}+2 E_{2}$ ）and quantum energy states shown in the figure below，please calculate the possible microstates configurations for the occupation by Bose－Einstein and Fermi－Dirac Statistics．（4\％）

系所組別：光電科學藇工程學系甲組
考試科目：近代物理
第 2 頁，共 3 頁


3．（a）Please draw the energy band diagram for a homogeneous pn junction（like figure below）after contact in the following two conditions：（a1）dark at equilibrium．（a2）under illumination at open circuit．（7\％）（b） Plot the current－voltage characteristic curve for a homogeneous pn junction．（3\％）

$\Phi_{s}$ ：Work function； $\mathrm{E}_{\mathrm{A}}$ ：Electron affinity； $\mathrm{E}_{\mathrm{i}}$ ：Ionization energy and $\mathrm{E}_{\mathrm{g}}$ ：Energy band gap
4．Please explain the terminologies below：（ $20 \%$ ）
（a）Zeeman Effect
（b）Selection Rule（For quantum transition）
（c）Characteristic X－ray
（d）Wien＇s displacement Law
（e）Fermi energy
5．A particle of mass $m$ under the influence of a restoring force proportional to the displacement from the rest position and producing vibrations of a certain eigenfrequency along one dimension．（a）Write down time－dependent Schrödinger equation for this particle．（b）What are the energy states and zero－point energy for this particle？（10\％）

6．In a Compton scattering experiment，the incident X－rays have a wavelength of 0.2685 nm ，and the scattered X－rays have a wavelength of 0.2703 nm ．Please calculate the angle between incident and scattered directions of X－rays？（10\％）

## 第 3 頁，共 3 頁

7．An electron is accelerated through a potential difference $\Delta V=10^{8} \mathrm{~V}$ ，what is its de Broglie wavelength？ （10\％）
8．Please illustrate the following terminologies：
（a）Population inversion（4\％）
（b）Wave－particle duality（3\％）
（c）Photoelectric effect（3\％）
9．An electron moves in one dimension and is subject to forces corresponding to a potential energy：

$$
V(x)=v[-\delta(x)+\delta(x-L)]
$$

What are the conditions for the existence of a bound state？（10\％）

