第1頁，共2頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．Figure 1 shows the common－emitter（CE）amplifier．（a）Please sketch the small signal equivalent circuit of the CE amplifier in high－frequency response．（ 10% ）in Fig．1，to find（b）the midband gain（ 10% ）and（c）the upper 3 dB frequency．（10\％）$V_{C C}=V_{E E}=10 \mathrm{~V}, \mathrm{l}=1 \mathrm{~mA}, \mathrm{R}_{8}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=8 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{sig}}=5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \beta_{0}=100, \mathrm{~V}_{\mathrm{A}}=100 \mathrm{~V}, \mathrm{C}_{\mathrm{s}}=1 \mathrm{pF}, \mathrm{f}_{\mathrm{T}}=800$ MHz ，and the resistance of Si material in base region，$r_{x}=50 \Omega$ ．

2．The circuit in Fig． 2 implements a complementary output rectifier．（a）Sketch and clearly label the waveforms of $v_{0}{ }^{+}$and $v_{0}-(10 \%)$ Assume a 0.7 V drop across each conducting diode．If the magnitude of the average of each output is to be 15 V ，（b）find the required amplitude of the sine wave across the entire secondary winding．（5\％）（c） What is the PIV of each diode？（5\％）

Fig． 1

Fig． 2

第 2 頁，共 2 頁

3．A differential amplifier shows in Fig．3．Please find the differential gain，the differential input resistance， the common mode gain，common mode rejection ratio，and common mode input resistance．For these transistors，$\beta=100$ and $V_{A}=100 \mathrm{~V}$ ．（25\％）

Figure 3
4．Please find the low－frequency gain，the frequency of the pole，and the frequency of zero of the circuit showing in Fig．4．The DC－bias current is $100 \mu \mathrm{~A}$ ．For $\mathrm{Q}_{1}, \mu_{n} \mathrm{C}_{0 \mathrm{x}}=90 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{A}}=12.8 \mathrm{~V}, \mathrm{~W} / \mathrm{L}=100$ $\mu \mathrm{m} / 1.6 \mu \mathrm{~m}, \mathrm{C}_{\mathrm{gs}}=0.2 \mathrm{pF}, \mathrm{C}_{\mathrm{gd}}=0.015 \mathrm{pF}$ ，and $\mathrm{C}_{\mathrm{db}}=20 \mathrm{fF}$ ．For $\mathrm{Q}_{2}, \mathrm{C}_{\mathrm{gd}}=0.015 \mathrm{pF}, \mathrm{C}_{\mathrm{db}}=36 \mathrm{fF}$ ，and $\left|\mathrm{V}_{\mathrm{A}}\right|=19.2$ V ．Assume that the resistance of the input signal generator is negligibly small．And for simplicity，assume that the signal voltage at the gate of Q_{2} is zero．（25\％）

Figure 4

