## 第1頁，共1頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．Find the directional derivative of $f(x, y, z)=2 x^{2}+3 y^{2}+z^{3}$ in the direction of $\vec{x}-2 \vec{y}$ at point $(1,1,1)$ ．（ $10 \%$ ）

2．Solve the following system of differential equations by diagonalization．（15\％）

$$
\begin{aligned}
& \frac{d x}{d t}=3 x+3 y \\
& \frac{d y}{d t}=1 x+5 y
\end{aligned}
$$

3．What is the outward flux of the vector field $\vec{F}=y^{3} \vec{x}+\left(3 x y+z^{3}\right) \vec{y}+(3 y z) \vec{z}$ through the surface of the square box shown below？（10\％）


4．Solve $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi$ subject to the boundary conditions $\psi(0)=0, \psi(L)=0 . \quad(\hbar$ and $m$ are constants）（ $10 \%$ ）
5．Find the inverse of $\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ ．（5\％）

6．（1）Suppose $y(t)$ is a function for which $y^{\prime}(t)$ is piecewise continuous and of exponential order c ．
Please justify $y(0)=\lim _{s \rightarrow \infty} s Y(s)$ ，where $Y(s)$ is the Laplace transform of $y(t) .(2 \%)$
（2）Consider the initial－value problem $t y^{\prime \prime}+y^{\prime}+t y=0, y(0)=1, y^{\prime}(0)=0$ ．Please find $Y(s) .(12 \%)$

7．Expand $f(x)=\left\{\begin{array}{lr}0, & -\pi<x<0 \\ \pi-x, & 0 \leq x<\pi\end{array}\right.$ in Fourier series，and write the converging value at $\mathrm{x}=0$ for the Fourier series．（12\％）
8．Use Residue theorem to evaluate $\int_{0}^{\infty} \frac{x^{p-1}}{1+x} d x, 0<p<1$ ．（12\％）

9．（1）Find the eigenvalues and eigenfunctions of the boundary－value problem

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\lambda y=0, y(1)=0, y(3)=0 . \quad(8 \%)
$$

（2）Put the differential equation in self－adjoint form．（2\％）
（3）Give an orthogonality relation．（2\％）

