第1頁，共2頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．（ 10% ）For a pair of equal and opposite charges q and $-q$ separated by a small distance d ，find the electric field E at location $\vec{R}(|\vec{R}| \gg d)$ in terms of $\vec{p}=q \vec{d}$ and $\vec{R} \quad$（using
$|\vec{R} \pm \vec{d} / 2|^{-3}=|(\vec{R} \pm \vec{d} / 2) \cdot(\vec{R} \pm \vec{d} / 2)|^{-3 / 2}=\left|R^{2} \pm \vec{R} \cdot \vec{d}+\left(\frac{d}{2}\right)^{2}\right|^{-3 / 2}=\left|R^{2} \pm \vec{R} \cdot \vec{d}\right|^{-3 / 2}=R^{-3}\left(1+\frac{3}{2} \frac{\vec{R} \cdot \vec{d}}{R^{2}}\right)$

Problem 1

Problem 2

problem 3

problem 4

2．（15\％）For a dielectric sphere with radius a placed in a uniform electric field $\vec{E}=E_{0} \hat{z}$ ．Using the continuity boundary conditions，find
（a）the potential Φ inside $(r<a)$ and outside $(r>a)$ the sphere
（b）electric field \mathbf{E} inside（ $r<a$ ）and outside（ $r>a$ ）the sphere
（c）Find the polarizability α of the sphere where α is defined as $P=\varepsilon_{0} \alpha E_{0}$
（Expand Φ in $\Phi(r, \theta)=\sum_{l=0}^{\infty}\left[A_{l} r^{l}+B_{l} r^{-(l+1)}\right] P_{l}(\cos \theta)$ and $\left.\hat{z}=\hat{r} \cos \theta-\hat{\theta} \sin \theta\right)$

3．(15%) For a coaxial cable with inner radius a and outer radius b
（a）(5%) find the capacitance C per unit length
（b）（5\％）find the self－inductance L per unit length
（c）（5\％）the coaxial cable is vertically stand upright and is maintained at potential V at inner cylinder $\mathrm{r}=a$ and grounded at outer radius $\mathrm{r}=\mathrm{b}$ ．Find the height h that the oil（with dielectric susceptibility χ_{e} and mass density ρ ）will rise inside the region between $a<r<b$ ．
4．(10%)
（a）（5\％）Derive ampere＇s law $\nabla \times B=\mu J$ in terms of vector potential \mathbf{A}
（b）（5\％）For a spherical shell of radius \mathbf{R} with a uniform surface charge σ spinning along \hat{z} axis at angular velocity ω which carries a surface current density $\bar{J}_{s}=\sigma \vec{v}=\sigma \vec{\omega} \times \vec{r}$ ，find the total dipole moment \vec{m} of the spherical shell．

第 2 頁，共 2 頁

5．（ 20% ）the E －field of a uniform plane wave propagating in a dielectric medium is given by $\mathrm{E}(t, z)=a_{x} \cos \left(\frac{10^{9}}{2 \pi} t-\right.$ $\left.\frac{z}{\sqrt{3}}\right)-a_{y} \sin \left(\frac{10^{9}}{2 \pi} t-\frac{z}{\sqrt{3}}\right)$
（ $5-a$ ）（ 5% ）Determine the frequency and wavelength of the wave．
（5－b）（5）What is the dielectric constant of the medium？
（5－c）（5\％）Describe the polarization of the wave．
（5－d）（5）Find the corresponding H －field．

6．（ 10% ）（Oblique incidence of plane waves at plane boundaries）
（6－a）（5 \％）From Fresnel＇s equations（Reflection coefficient for parallel polarization）$\Gamma_{\|}=\frac{E_{r 0}}{E_{i 0}}=\frac{\eta_{2} \cos \theta_{t}-\eta_{1} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}^{\prime}}$ and $\mu_{1}=\mu_{2}$ ，please derive Brewster angle $\left(\theta_{B \|}=\tan ^{-1} \sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}}\right.$ ）of no reflection for the case of parallel polarization．
（6－b）（ 5% ）A light ray is incident from air（ n_{1} ）obliquely on a transparent sheet thickness T with an index of refraction， n_{2} ，as shown below．The angle of incidence is α ．Find the lateral displacement（ d_{1} ）of the emerging ray．

7．（ 10% ）Determine the dominant and their frequencies in an－air－filed rectangular cavity resonator for（a）$a>b>d$ ，（b） $a>d>b$ ，and $(c) a=b=d$ ，where a, b ，and d are the dimensions in the $x-y$－，and z－directions，respectively．

8．(10%) A thin quarter－wavelength vertical antenna over a perfectly conducting ground is excited by a time－harmonic source at its base．Find its radiation pattern，radiation resistance $\left(R_{r}\right)$ ，and directivity (D) ．Here，the quarter－wave antenna radiates only into the upper half－space，its total radiated power is $P_{r}=18.27 I_{m}^{2}$ ．

