編號: 44

國立成功大學 105 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0228,節次:1

第1頁,共4頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. (a)As shown in Figure 1, the five forward I-V curves correspond to five p-n junction diodes made from different semiconductors with corresponding energy band gap E_{g1} , E_{g2} , E_{g3} , E_{g4} and E_{g5} . Please identify which of the following item(s) is(are) true.(A) E_{g3} > E_{g4} (B) E_{g5} > E_{g4} (C) E_{g3} < E_{g4} (D) E_{g3} > E_{g2} > E_{g1} (E) E_{g1} > E_{g2} > E_{g3} (3%)

Figure 1

(b) As shown in Figure 2, if the five forward I-V curves correspond to a P-N diode operated at different temperatures, which of the following item(s) is(are) true.(A) $T_1>T_2(B)T_3>T_4(C)T_2>T_5(D)T_3>T_2(E)T_5>T_4(2\%)$

Figure 2

2. As shown in Figure 3, assuming the p-n and Zener diodes are ideal, and Vz = 5V, please find $V_2 = V$ and $V_3 = V$ when the voltage of V_1 is 6 V. (10%)

國立成功大學 105 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電子學

第2頁,共4頁

考試日期:0228,節次:1

Figure 3

3. As shown in Figure 4, the current meter (M) with a full scale of 50 μ A and a negligible resistance. (a)Assuming the transistor has V_{BE} =0.7 V at I_E =1 mA, what value of R_C would establish a resistor current of 1 mA? (b) what value of β would result in the current meter(M) at a full-scale reading ?(c) what is β the if the meter reading is 5 μ A?(15%)

Figure 4

4. Figure 5 shows a CMOS amplifier. $|V_{TN}| = |V_{TP}| = 1V$, $K_n = 4K_p = 100 \mu A/V^2$, V_{TN} and V_{TP} are the threshold voltages of the NMOS and PMOS FETs, respectively. $K_{n(p)} = \mu_{n(p)} C_{ox} W/2L$, where $\mu_{n(p)}$ is the electron(hole) mobility, C_{OX} is the oxide capacitance, W is the gate width, and L is the gate length. (a) what is the $V_D = V$, and drain bias current $I_D = MA$. (10%) (b) Assuming the output resistance of NMOS and PMOS FETs are infinite, what is the small signal gain $\nu_0/\nu_1 = MA$, and input resistance, $V_D = MA$. (10%)

國立成功大學 105 學年度碩士班招生考試試題

編號: 44

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0228,節次:1

第3頁,共4頁

Figure 5

5. Figure 6 shows an ideal amplifier having a gain of -100 V/V with an impedance Z connected between its output and input terminals. Find the Miller equivalent circuit when Z is (a) a 1-M Ω resistance and (b) a 1-pF capacitance. In each case, please plot the equivalent circuit and use the equivalent circuit to determined V_o/V_{sig} . (10%)

Figure 6

- 6. (20 %) (Frequency Response) Consider the common-emitter amplifier of Figure 7 under the following conditions: R_{sig} =5 k Ω , R_{I} =33 k Ω , R_{2} =22 k Ω , R_{E} =3.9 k Ω , R_{C} =4.7 k Ω , R_{L} =5.6 k Ω , V_{CC} =5 V. The dc emitter current can be shown to be I_{E} \cong 0.3 mA, at which β =120, r_{0} =300 k Ω and r_{x} =50 Ω .
- (a) If the transistor is specified to have f_T =700 MHz and C_{μ} =1 pF, find the upper 3-dB frequency.
- (b) Design the coupling and bypass capacitors for a lower 3-dB frequency of 100 Hz. Design so that the contribution of each of C_{C1} and C_{C2} to determining is only 5%.

編號: 44

國立成功大學 105 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0228,節次:1

第4頁,共4頁

- 7. (10 %) Consider the Op-amp circuit shown in Figure 8, where the op amp has infinite input resistance and zero output resistance but finite open-loop gain A.
- (a) Replace the op-amp with its equivalent circuit model and show that $\beta = R_1/(R_1 + R_2)$
- (b) If $R_1=10 \text{ k}\Omega$, find R_2 that results in A=10 V/V for the following three cases: (i) A=1000 V/V; (iii) A=100 V/V; (iii) A=12 V/V.

Figure 8

8. (10 %) For the negative-feedback loop, find the loop gain A β for which the sensitivity of closed-loop gain to open-loop gain is -20 dB. For what value of does the sensitivity become 1/2?

