國立成功大學 106 學年度碩士班招生考試試題

編號: 45

系

所:光電科學與工程學系

考試科目:電子學

考試日期:0214,節次:1

第1頁,共3頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. An pn junction operating in the forward-bias region with a current of 1 mA is found to have a diffusion capacitance of 10 pF (at temperature of 300K). What diffusion capacitance do you expect this junction to have at I = 0.1 mA? (5%) What is the mean transit time for this junction? (5%)

2. Figure 1 shows a circuit that performs the high-pass, single-time-constant function. Such a circuit is known as a first-order high-pass active filter. Derive the transfer function and show that the high-frequency gain is $(-R_2/R_1)$ and the 3-dB frequency $\omega_0 = 1/(CR_1)$. Design the circuit to obtain a high-frequency input resistance of $10 \text{ k}\Omega$, a high-frequency gain of 40 dB, and a 3-dB frequency of 1 kHz. At what frequency does the magnitude of the transfer reduce to unity? (10%)

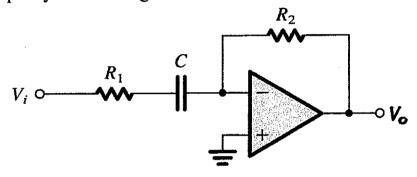


Figure 1.

3. In the circuit shown in Figure 2, I is a dc current and v_i is a sinusoidal signal with small amplitude (less than 10 meV) and a frequency of 100 kHz. Representing the diode by its small-signal resistance r_d , which is a function of I, sketch the circuit for determining the sinusoidal output voltage V_0 , and find the phase shift between V_i and V_0 . Find the value of I that will provide a phase shift of -45°. Assume n=1. (10%)

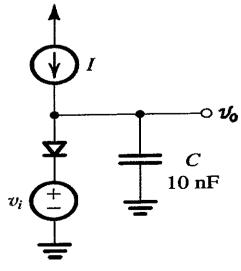


Figure 2.

國立成功大學 106 學年度碩士班招生考試試題

編號: 45

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0214,節次:1

第2頁,共3頁

4. The transistor in Figure 3(a) is biased with a constant current source I = 1 mA and has $\beta = 100$ and $V_A = 100$ V.

- (a) Find transconductance (g_m) , small-signal input resistance between base and emitter (r_n) , and output resistance (r_0) (10%).
- (b) If terminal Z is connected to ground, X to a signal source v_{sig} with a source resistance $R_{\text{sig}} = 2 \text{ k}\Omega$, and Y to an 8-k Ω load resistance, use the hybrid- π small-signal model of Figure 3(b), to draw the small-signal equivalent circuit of the amplifier. (Note that the current source I should be replaced with an open circuit.) Calculate the overall voltage gain v_y/v_{sig} . If r_0 is neglected, what is the error in estimating the gain magnitude? (10%)

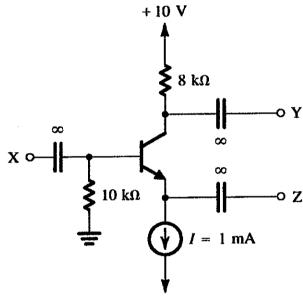


Figure 3(a)

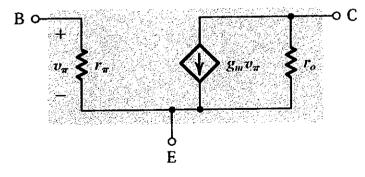


Figure 3(b)

國立成功大學 106 學年度碩士班招生考試試題

編號: 45 **國立**原 系 所:光電科學與工程學系

考試科目:電子學

考試日期:0214,節次:1

第3頁,共3頁

- 5. Please using four NMOS transistors to plot the cascode MOS current mirror circuit. (10%)
- 6. For the devices in the circuits of Figure 4, $|V_t|=1$ V, $\lambda=0$, $\mu_n C_{ox}=50$ $\mu A/V^2$, L=1 μm , and W=10 μm . Find (a) V_2 (5%) and (b) I_2 (5%). When Q_3 and Q_4 are made to have W=100 μm , how are the values of (c) V_2 (5%) and (d) I_2 ? (5%)

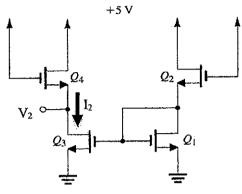


Figure 4

7. The differential amplifier in Figure 5 uses transistors with $\beta = 100$. Evaluate the following: (a) The input differential resistance R_{id} . (5%) (b) The overall differential voltage gain v_{od}/v_{sig} (neglect the effect of r_o). (5%) (c) The worst-case common-mode gain if the two collector resistances are accurate to within $\pm 1\%$. (5%) (d) The input common-mode resistance (assuming that the Early voltage $V_A = 100 \text{ V}$). (5%)

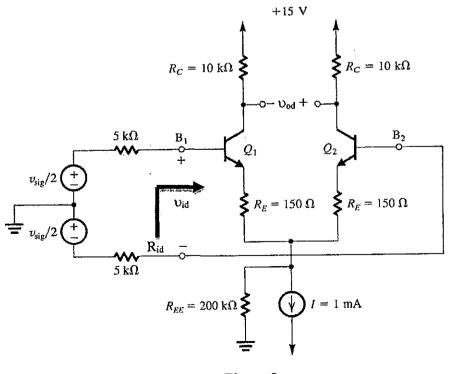


Figure 5