編號: 46

國立成功大學 106 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:工程數學

考試日期:0214,節次:3

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 1.(10%)

Find the Fourier transforms of

(a)
$$f(x) = \begin{cases} 1, |x| < a \\ 0, |x| > a \end{cases}$$

(b)
$$p(x) = \frac{1}{x^2 + a^2}$$
 by making use of the standard integral $\int_{-\infty}^{\infty} \frac{\cos \omega x}{x^2 + a^2} dx = \frac{\pi}{a} e^{-|\omega|a}$, $(a > 0)$.

2. (5%)

There is one matrix A which has eigenvalues 1 and -1 with respect to its corresponding eigenvectors $\binom{1}{0}$ and

 $\binom{0}{1}$. Please show what is the matrix **A**.

3. (5%)

A triangle is composed of three vectors of \vec{a} , \vec{b} , and \vec{c} . Please prove the law of cosines for a triangle by means of vector analysis.

4. (15%)

Please make fully descriptions what is Green's Theorem and write out the equation along with a drawing illustration.

5. (5%)

A rotation $\varphi_1 + \varphi_2$ about the z-axis is carried out as two successive rotations φ_1 and φ_2 , each about the z-axis. Use the matrix representations of the rotations to derive the trigonometric identities

$$\cos(\varphi_1 + \varphi_2) = \cos\varphi_1 \cos\varphi_2 - \sin\varphi_1 \sin\varphi_2,$$

$$\sin(\varphi_1 + \varphi_2) = \sin\varphi_1 \cos\varphi_2 + \cos\varphi_1 \sin\varphi_2.$$

6. (10%)

(a) Find the Fourier series representation of

$$f(x) = \begin{cases} 0, -\pi < x \le 0 \\ x, 0 \le x < \pi \end{cases}$$

(b) From the Fourier expansion show that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$

編號: 46

國立成功大學 106 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:工程數學

考試日期:0214,節次:3

第2頁,共2頁

7. (15%) Find the integral
$$\int_0^{2\pi} \frac{d\theta}{\left(a + b\cos\theta\right)^2} = ? \text{ (where } 0 < b < a) \text{ by Residue theorem}$$

- 8. (15%) Find the solution of y(x) for $\frac{d^2y}{dx^2} + \frac{2}{x}\frac{dy}{dx} \frac{l(l+1)}{x^2}y = \delta(x-a)$ [$0 \le x < \infty$] where a > 0, l: positive integer, and $y(0) = y(\infty) = 0$
- 9. (10%) Use Laplace transform to solve $y''' y' = \sin(t)$ with y(0) = 2, y'(0) = 0, and y''(0) = 0
- 10. (10%) Solve the partial differential equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} + \sin(x)$ for t > 0, $0 < x < \pi$ with boundary condition u(0,t) = 0, $u(\pi,t) = \pi$ and initial condition $u(x,0) = 2\sin(x)$