國立成功大學 111學年度碩士班招生考試試題

編 號: 40

系 所: 光電科學與工程學系

科 目: 近代物理

日 期: 0220

節 次:第1節

備 註:不可使用計算機

編號: 40

國立成功大學 111 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目: 近代物理

考試日期:0220,節次:1

第1頁,共2頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

 1. (8%) If two photons are generated when an electron-positron annihilation occurs at rest, please find the energy and the momentum of the annihilation photons.
- 2. Consider a potential well $U(x) = \begin{cases} 0 & 0 \le x \le a \\ \infty & x < 0 \text{ and } x > a \end{cases}$

An electron (mass = m) with the wavefunction $\Psi(x,0) = C_0\psi_0 + \frac{1}{\sqrt{3}}\psi_1$ is trapped in above potential well (ψ_0 and ψ_1 are both normalized), please:

- (a) Find C₀ (3%)
- (b) What are the potentially-detectable energies of the electron at t = 0? (3%)
- (c) Find the expectation value of the electron's energy at t = 0 (3%)
- (d) Find the wavefunction of the electron at t, i.e., $\Psi(x, t)$ (3%)
- (e) Calculate the expectation value of the electron's energy at $t \neq 0$ (3%)
- 3. There are five electrons placed in a box. If the volume of the box $V = a^3$, please find:
- (a) The energy of the ground state and the first excited state (8%)
- (b) The number of the degenerate energy level for the ground state and the first excited state (8%)
- 4. (5%) Please try to verify the uncertainty principle $\Delta x \Delta p \ge \hbar/2$ with the electron diffraction experiment (the width of the slit is a).
- 5. For a hydrogen atom $\Psi_{100} = Ce^{-r/a}$, please
- (a) (3%) Determine the normalization constant C. (not that $\int_0^\infty x^n e^{-bx} dx = \frac{n!}{b^{n+1}}$
- (b) (3%) Find the radial probability density P(r)
- 6. In general, an electron in an atom has both orbital angular momentum characterized by the quantum number *l* and spin angular momentum characterized by the quantum number *s*.
 - (a) Find the total angular momentum quantum number j. (3%)
 - (b) Find the z component of total angular momentum \vec{J} . (3%)
 - (c) If $\vec{J_1}$ is one angular momentum (orbital, spin, or a combination) and $\vec{J_2}$ is another, the resulting total angular momentum is $\vec{J} = \vec{J_1} + \vec{J_2}$. Find the possible values of total angular momentum quantum number j. (3%)
 - (d) Two electrons each have zero orbital angular momentum. What are the possible quantum numbers for the total angular momentum of the two-electron system? (3%)

編號: 40

國立成功大學 111 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目: 近代物理

考試日期:0220,節次:1

第2頁,共2頁

(e) An electron in an atom has orbital angular momentum \vec{L}_1 with quantum number $l_1 = 2$, and a second electron has orbital angular momentum \vec{L}_2 with quantum number $l_2 = 3$. What are the possible quantum numbers for the total orbital angular momentum $\vec{L} = \vec{L}_1 + \vec{L}_2$? (3%)

7. Which of the following transitions in sodium do not occur as electric dipole transitions? (Hint: Give the selection rule that is violated.) (10%)

$$\begin{array}{lll} 4S_{1/2} \to 3S_{1/2} & 4S_{1/2} \to 3P_{3/2} & 4P_{3/2} \to 3S_{1/2} \\ 4D_{5/2} \to 3P_{1/2} & 4D_{3/2} \to 3P_{1/2} & 4D_{3/2} \to 3S_{1/2} \end{array}$$

8. The probability distribution function for the speeds of the molecules in a classical ideal gas can be expressed by Maxwell distribution of molecular speeds:

$$n(v)dv = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-mv^2/2kT} dv$$

where N and m are the number and mass of the molecules, respectively, k and T are the Boltzmann constant and temperature. Find the most probable speed. (10%)

9. Classically, the kinetic energy of rotation is

$$E = \frac{1}{2}I\omega^2$$

where I is the moment of inertia, ω the angular velocity of rotation.

(a) Find the energy levels of a diatomic molecule rotating about an axis through its center of mass. (5%)

(b) The energy difference ΔE between the l=0 and l=1 rotational levels in the CO molecule is found experimentally from measurement of the wavelength $\lambda=2.6$ nm of the corresponding transition. For CO, ΔE is equal to 4.77×10^{-4} eV. Find the equilibrium separation, or bond length r_0 , of the CO molecule. (5%) [Hint: the unified mass unit is $1 \text{ u} = 1.6605 \times 10^{-27} \text{ kg} = 931.4940 \times 10^6 \text{ eV/c}^2$.]

10. Find (a) the current density, and (b) the drift velocity if there is a current 1 mA in a NO. 14 copper wire. [The diameter of NO. 14 wire is 0.064 in = 0.163 cm, and the electron density is 8.47×10^{28} /m³] (5%)