(91) 學年度 國立成功大學 之 电 f 系 f 代 好 处 試題 共 2 頁 所 f 代 好 处 試題 第 / 頁

Modern Physics

2002/04

Physical constants:

Avogadro's number: $N_a=6.02x10^{23}$ particles/mol

Coulomb constant: $k=8.987x10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

Mass of electron: me=9.1x10-31 Kg

Mass of unit: $u=1.66x10^{-27} \text{ Kg}$

Speed of light: c=299792458 m/s

7 207-1/

Fine structure constant: $\alpha = 7.297x10^{-3}$

Permeability of free space: $\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2$

Boltzmann's constant: $k=1.38x10^{-23}$ J/K

Fundamental charge: $e=1.6x10^{-19}$ C

Mass of proton: $M_p=1.67 \times 10^{-27} \text{ Kg}$

Planck's constant: h=6.6x10⁻³⁴ J·s

Constant of gravitation: $G=6.67x10^{-11}N \cdot m^2/Kg^2$

Gas constant: R=8.3 J/mol·K

Problem 1 (30%) Describe the significance of the following terms:

(A) Blackbody Radiation. (5%)

(B) Photoelectric Effect. (5%)

(C) Lamb Shift. (5%)

(D) Bohr Magneton. (5%)

(E) Zero-point Energy. (5%)

(F) Holography. (5%)

Problem 2 (15%)

- (A) In the Hall Effect experiment, a strip of copper 150 μ m thick is placed in a magnetic field B=0.65 T perpendicular to the plane of the strip, and a current i = 23 A is set up in the strip. The Hall potential measured is V = 5.6 μ V. What would be the density charge carrier per atom? (Cu: 8.49x10²⁸ atoms/m³) (10%)
- (B) Explain briefly the Quantum Hall Effect and the usage of this effect. (5%)

model to derive these eigen-values. (10%)

Problem 3 (20%)

- (A) The eigen-values of a diatomic molecular around its equilibrium position can be approximated by $E(v,J) = (v + \frac{1}{2})\hbar\omega + B_v J(J+1)$, where v and J are vibration and rotational quantum number, \hbar , ω and B_v are constants. Describe a simple model and the meaning of these constants (\hbar , ω and B_v) in your
- (B) Estimate the ratio of energy contribution from the vibration and rotational energy. (10%)

(背面仍有題目,請繼續作答)

22/200

9D 學年度 國立成功大學 老 東 所 近代 扬 ? 《 試題 共 新 近代 扬 ? 《 試題 英 2 頁

Problem 4 (20%)

- (A) The Royal Swedish Academy of Sciences award the Nobel Prize in Physics for 2001 jointly to Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman, for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates. What is Bose-Einstein condensation? (5%)
- (B) Fig. 4.1 (from web: http://jilawww.colorado.edu/bec/) shows the first achievement of Bose-Einstein condensation in ⁸⁷Rb atoms. It is a two-dimensional number density of atoms per unit velocity-space volume distributions of the trapped 87Rb cloud for three runs with different amount of cooling. (i)Explain the key points of observing the Bose-Einstein condensation of ⁸⁷Rb atoms from this figure. (ii) If the density of the 87 Rb cloud is $n = 1 \times 10^{14}$ atoms/cm³, estimate the critical temperature of observing the Bose-Einstein condensation of ⁸⁷Rb atoms. (⁸⁷Rb: atomic mass 86.909 g/mole) (10%)

Fig. 4.1

Fig. 4.2

(C) Fig. 4.2 (from web: http://cua.mit.edu/ketterle_group/Nice_pics.htm) demonstrates.the atom laser with Na condensate for the first time. What is atom laser? (5%)

Problem 5 (15%)

(A) Using arguments concerning curvature, wavelength, and amplitude, sketch very carefully the wave function corresponding to a particle with energy E in the finite potential barrier shown in Fig. 5.1,

$$V(x) = \begin{cases} V_0 & \text{for } 0 < x < a \\ 0 & \text{for } 0 > x \text{ and } x > a \end{cases}, \text{ where } 0 < E < V_0. \text{ (10\%)}$$

(B) Re-sketch the wave function if (i) a \rightarrow 2a, and (ii) $0 < V_0 < E$. (5%)

