- 1. Draw and explain briefly the possible load line of an enhancement-mode n-MOSFET using (a) a forward-biased diode, or (b) a reverse-biased diode, or (c) a depletion-mode n-MOSFET with $V_{GS}=0\ V$ as the load device. (15%)
- 2. Calculate the small-signal input resistance R_i as shown in Fig.1. Assume $R_B = R_C = 2 \ k\Omega$, $g_m = 25 \ mS$, $\beta = 100$, and $r_o = \infty$ (10%)
- 3. As the circuit shown in Fig.2, let $\beta = 100$, $C_p = 2pF$ and $f_T = 400MHz$. Calculate the midband gain and the upper 3-dB frequency. (12%)
- 4. A multiple amplifier having a first pole at 1MHz and an open-loop gain of 100dB is to be compensated for closed-loop gains as low as 20 dB by introduction of a new dominant pole. At what frequency must the new pole be placed?(3%)
- 5. Consider the complementary BJT class B output stage and neglect the effects of V_{BE} and V_{CEsat}. For ±10V power supplies and a 100-Ω load resistance, what is the maximum sine-wave output power available? What supply power corresponds? What is the power-conversion efficiency? For output signals of half this amplitude, find the power-conversion efficiency.(10%)
- 6. (a)A CMOS inverter pair is shown in Fig. 3(a). Let V_{TN}=0.8V, V_{TP}=-0.8V, and Kn=Kp. (i) If ν_{O1}=0.6V, determine ν₁ and ν_{O2}. (ii) Determine the range of ν_{O2} for which both N₂ and P₂ are biased in the saturation region. (20%)
 (b)What is the function realized at Y in the CMOS circuit shown in Fig.3(b)? (5%)
- 7. Your answers must be as brief as possible for the following questions

 (a)List the parameters used to specify the transmission characteristics of a
 - low-pass filter. (5%)
 - (b) A filter transfer function is written as the ratio of two polynomials. The degree of its denominator is P and the degree of its numerator is R. What's the order of the filter? (5%)
 - (c) For the filter in (b) to be stable, what is the relation between P and Q. (5%)
 - (d)For the amplifier in Fig. 4, what's the class of its output stage? (Hint: Maybe one of class AB, A, B, C, D, E, ..., etc.) (5%)
 - (e) What is the function of the R and Cc in Fig. 2? (5%)

Fig. 1

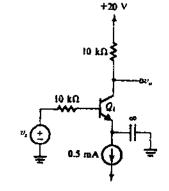
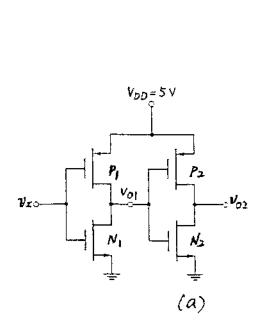



Fig. 2

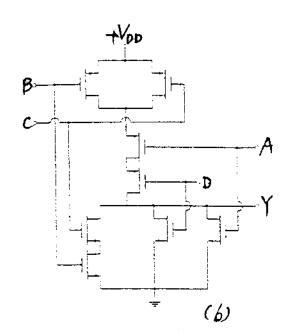
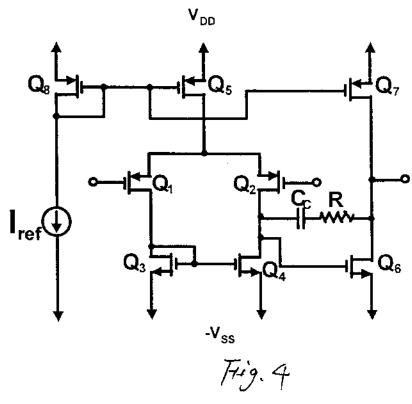



Fig. 3

