國立成功大學九十五學年度碩士班招生考試試題

共2ノ頁・第一頁

編號: E 50

系所:光電科學與工程研究所

科目:近代物理

本試題是否可以使用計算機: □可使用 , □不可使用

(請命題老師勾選)

Physical constants:

Avogadro's number: No=6.02x1023 particles/mol

Coulomb constant: k=8.987x109 N·m2/C2

Mass of electron: m,=9.1x10-31 Kg

Mass of unit: $u=1.66x10^{27} Kg$

Speed of light: c=299792458 m/s

Fine structure constant: $\alpha = 7.297 \times 10^{3}$

Permeability of free space: $\mu_0 = 4 \pi \kappa 10^{-7} N/A^2$

Boltzmann's constant: k=1.38x10²³ J/K

Fundamental charge: e=1.6x10⁻¹⁹ C

Mass of proton: M,=1.67x10⁻²⁷ Kg

Planck's constant: h=6.6x10³⁴ J·s

Constant of gravitation: G=6.67x10⁻¹¹N·m²/Kg²

Gas constant: R=8.3 J/mol·K

1. Explain briefly

(a) Photoelectric effect, (b) Compton effect, (c) Heisenberg's uncertainty principle. (15%)

2. Photoelectric effect

In a photoelectric experiment using a sodium surface, you find a stopping potential of 1.85 V for a wavelength of 300 nm and a stopping potential of 0.820 V for a wavelength of 400 nm. From these data find (a) a value for the Planck constant, (b) the work function Φ for sodium, and (c) the cutoff wavelength λ_0 for sodium. (15%)

3. Quantum number

(a) For a given value of the principal quantum number n, how many values of the orbital quantum number l are possible? For a given value of l how many values of the orbital magnetic quantum number m_l are possible? (b) For a given value of n, how many values of m_l are possible? (10%)

4. An electron in an infinite well (見下圖)

An electron is confined to a one-dimensional, infinitely deep potential energy well of width L = 100pm. (a) What is the smallest amount of energy the electron can have? (b) How much energy must be transferred to the electron if it is to make a quantum jump from its ground state to its second excited state? (10%)

(背面仍有题目.請繼續作答)

國立成功大學九十五學年度碩士班招生考試試題

共 乙 頁,第7頁

編號:

50 系所:光電科學與工程研究所

科目:近代物理

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

5. 名詞解釋 (15%)

- (a) Pauli exclusion principle (5%)
- (b) Hall effect (5%)
- (c) Cooper pairs (5%)
- 6. According to the free-electron model, show that the resistance R of a length L of wire is given by $R = mL/nAe^2T$, where A is the cross-sectional area of the wire, T is the mean time between collisions, m is the electron mass, e is the electron charge, and n is the numbers of electron per unit volume. (10%)
- 7. (a) Write down the Schrödinger equation for a particle in three dimensions moving under the action of a spherically symmetrical elastic force with an elastic coefficient, K. (b) Do the same for a charged particle moving in a Coulomb field. (10%)
- 8. A particle is in the ground state in a potential well of length a. At time t=0 the wall at x=a is suddenly moved to x=2a. Calculate the probability that, at time t>0, (a) the energy of the particle is the same as before t=0; and (b) the energy of the particle is less than before t=0. (15%)