國立成功大學九十五學年度碩士班招生考試試題

編號: 751 系所: 光電科學與工程研究所

科目:電子學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

Complete questions: 30%

1. Holes are being steadily injected into a region of n-type silicon. In the steady state, the excess-hole concentration profile shown in fig.1 is established in the n-type region. If $N_D=10^{16} {\rm cm}^{-3}$, $n_i=1.5 {\rm x} 10^{10} {\rm cm}^{-3}$ and W=5 μ m, what is the density of current $J_x(1)$ that will flow in the x direction.

Fig. 1

- 2. If for a particular junction, $N_A=10^{16} cm^{-3}$, $N_D=10^{15} cm^{-3}$, find the junction built in voltage V_{bi} (2). Assume $n_i=10^{10} cm^{-3}$. Also, find the width of depletion region (W_{dep}) (3) and its extent in n (4) region when the junction is reverse biased with $V_R=5V$. Assume the junction area is $400 \mu m^2$. Also, calculate C_j (5).
- 3. Consider a CMOS process for which L_{min} =0.8 μ m, t_{ox} =15nm, μ_n =550cm²/V.s, and V_t =0.7V. ϵ_{ox} =3.45x10⁻¹¹F/m
 - (a) find C_{ox} (6) and k_n ' (7).
 - (b) For an NMOS transistor with W/L=16 μ m/0.8 μ m, calculate the values of V_{OV} (8) , V_{GS} (9) , and V_{DSmin} (10) needed to operate the transistor in the saturation region with a dc current I_D=100 μ A.
 - (c) For the device in (b), find the value of V_{OV} (11) and V_{GS} (12) required to cause the device to operate as a 1000Ω resistor for very small v_{DS}
- 4. For the Darlington voltage follower in Fig. 2, find the R_{in} (13), R_{out} (14) and V_o/V_{sig} (15) for the case I_{E2} =5mA, β_1 = β_2 =100, R_E =1K Ω , and R_{sig} =100K Ω .

(背面仍有題目.請繼續作签)

編號: 51 系所:光電科學與工程研究所

科目:電子學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

Fig. 2

Calculations: 70%

1. Find the differential voltage gain of the modified version difference amplifier of Fig. 3. (10%)

Fig. 3

2. Sketch and clearly label the transfer characteristic of the circuit in Fig.4 for -20V< v_I <+20V. Assume that the diodes can be presented by a piecewise-linear model with V_{DO} =0.65V and r_D =20 Ω . Assuming that the specified Zener voltage (8.2V) is measured at current of 10mA and r_Z = 20 Ω , represent the Zener by a piecewise-linear model. (10%)

編號:

51 系所:光電科學與工程研究所

科目:電子學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

3. Consider the circuit shown in Fig.5. For each transistor β =100 and each diode V_D = 0.7V, find the voltage V_{B1} , V_{E1} , V_{C1} , V_{B2} , V_{E2} and V_{C2} . (15%)

4. Consider the differential amplifier shown in Fig. 6. Find the differential gain, the differential input resistance, the common mode gain and the common mode input resistance. For these transistors, $\beta=100$ and $V_A=100V$. (15%)

(背面仍有題目,請繼續作答)

編號: 51 系所:光電科學與工程研究所

科目:電子學

本試題是否可以使用計算機: ①可使用 , ②不可使用 (請命題老師勾選)

Fig. 6

5. The circuits shown in Fig. 7 employ negative feedback. Assume that each transistor is sized and biased so that $g_m=1mA/V$ and $r_0=100k\Omega$. Otherwise ignore all dc biasing detail and concentrate on small signal operation resulting in response to the input signal v_{sig} for $R_L=10k\Omega$, $R_1=500K\Omega$, and $R_2=1M\Omega$, find the overall voltage gain v_o/v_{sig} and the input resistance R_{in} for each circuit. Neglect the body effect. (20%)

Fig. 7