國立成功大學九十五學年度碩士班招生考試試題

編號: 4 52 系所: 光電科學與工程研究所

科目:電磁學

本試題是否可以使用計算機: □可使用 , □不可使用 (請命題老師勾選)

- 1. A static charge distribution produces a radial electric field $\vec{E} = A \frac{e^{-br}}{r^2} \vec{e}_r$, where A and b are constants.
 - (a) (5 %) What is the charge density? Sketch it.
 - (b) (5 %) What is the total charge Q?

[Hint: You may use the property of the Dirac's delta function $\delta(\vec{r})$: $\nabla^2 (1/r) = -4\pi \delta(\vec{r})$]

- 2. A point charge Q is at a distance d from the center of a grounded conducting sphere of a radius a (a < d). Determine
 - (a) (10 %) the charge distribution induced on the surface of the sphere, and
 - (b) (5 %) the total charge induced on the sphere.
- 3. Two coaxial circular turns of wire of radii a and b are separated by a distance x and carry currents i_a and i_b respectively. Assume a >> b.
 - (a) (5 %) What is the mutual inductance?
 - (b) (5 %) What is the force between the currents?
- 4. (15%) Consider a resonator made of a section of coaxial line with length d and short circuited with conducting plates at both ends as shown below.

What are the electric and magnetic fields for the TEM modes? Hint: The electric and magnetic fields for the TEM wave in an infinitely long coax, propagating along the positive z-direction take the form

$$E_{\rho} = \frac{E_{0}}{\rho} \cos(\kappa z - \omega t) \qquad H_{\phi} = \frac{E_{0}}{\eta \rho} \cos(\kappa z - \omega t)$$

5. (15%) A plane polarized electromagnetic wave traveling in a dielectric medium of refractive index n is reflected at normal incidence from the surface of a conductor. Find the phase change undergone by its electric vector if the refractive index of the conductor is $n_2 = n(1 + i\rho)$.

(背面仍有翅目,硝墨贝作答)

國立成功大學九十五學年度碩士班招生考試試題

共 之頁,第2頁

編號: 752 系所:光電科學與工程研究所

科目:電磁學

本試題是否可以使用計算機: □可使用 , □不可使用 (請命題老師勾選)

- 6. (10 %) A ferromagnetic sphere of radius a is magnetized with a magnetization $\vec{M} = (Az^2 + B)\vec{e}_z$. Please determine the equivalent magnetization current densities \vec{J}_m and \vec{J}_{ms} and the equivalent magnetization charge densities ρ_m and ρ_{ms} (the center of the sphere is at the origin of the coordinate system).
- 7. An electron is introduced in a region of uniform electric and magnetic fields at right angles to each other $(\vec{E} = E \vec{e}_x, \vec{B} = B \vec{e}_y)$.
 - (a) (5 %) For what initial velocity will the electron move with constant velocity (both the direction and the magnitude of velocity are constant)?
 - (b) (10 %) Consider a beam of electrons of arbitrary velocity distribution simultaneously injected into a plane normal to the electric field. Is there a time at which all the electrons are in this plane again?
- 8. (10%) The mutual capacitance of two thin metallic wires lying in the plane z = 0 is C. Now the half space z < 0 is filled with a dielectric material with dielectric constant ε . What is the new capacitance?

