編號:

55

國立成功大學九十八學年度碩士班招生考試試題

共 二頁,第一頁

系所組別: 光電科學與工程研究所

考試科目: 工程數學

考試日期:0307, 節次:3

☑不可 使用計算機 ※ 考生請注意:本試題 □可

1. (8%) (a) If complex function f(z) has a simple pole at z = a on the real axis, please show the following theorem: $\lim_{r\to 0} \int_C f(z) dz = \pi i \operatorname{Res}_{z=a} f(z)$

, where $\underset{z=a}{\text{Re } s} f(z)$ is the residue of f(z) at z=a, the path C_2 is

 $C_2: z = a + re^{i\theta}, 0 \le \theta \le \pi.$

(7%) (b) Integrate the following complex function counterclockwise around C.

$$\frac{\cos z}{z^n}$$
, n = 1, 2,, C: $|z| = 1$.

2. (8%) (a) The convolution f * g of functions f and g is defined by

$$h(x) = (f * g)(x) = \int_{-\infty}^{\infty} f(p)g(x-p)dp = \int_{-\infty}^{\infty} f(x-p)g(p)dp.$$

Suppose that f(x) and g(x) are piecewise continuous, bounded, and absolutely integrable on the x-axis. Please show the convolution theorem:

 $\mathcal{F}(f * g) = \sqrt{2\pi} \, \mathcal{F}(f) \mathcal{F}(g)$

(7%) (b) Find the Fourier transform of f(x).

$$f(x) = \begin{cases} k & \text{if } -1 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

3. (5%) (a) Three matrices $A = \begin{bmatrix} 4 & 1-3i \\ 1+3i & 7 \end{bmatrix}$, $B = \begin{bmatrix} 3i & 2+i \\ -2+i & -i \end{bmatrix}$, and

$$C = \begin{bmatrix} \frac{1}{2}i & \frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2}i \end{bmatrix}$$
. Please point out and explain your answer which

is the skew-Hermitian matrix and which is the unitary matrix.

(10 %) (b) Let f = zy + yz, $\vec{V} = [y, z, 4z - x]$. Please find (i) $\nabla^2 (f^2)$ and (ii)

$$D_{\bar{v}} f$$
 at (3, 7, 5).

(5 %) (c) $\vec{F} = [z^2, x^3, y^2], C: x^2 + y^2 = 4, x + y + z = 0$. Please evaluate the line

integral
$$\int_C \vec{F}(\vec{r}) \cdot d\vec{r}$$
.

(背面仍有題目.請繼續作答)

國立成功大學九十八學年度碩士班招生考試試題

系所組別: 光電科學與工程研究所

考試科目: 工程數學

考試日期:0307·節次:3

☑不可 使用計算機 ※ 考生請注意:本試題 □可

4. Find the general solution of the following ODEs (ordinary differential equations):

(a)
$$\frac{dy}{dx} = \cosh 4x$$
. (5%); (b) $\frac{dy}{dx} = \frac{4x^2 + y^2}{xy}$. (10%)

5. Consider the Cauchy problem for the equation

$$\frac{dy}{dx} = e^y + \cos x$$

with the initial condition y(0) = 0. The solution has the form

$$y = Ax + Bx^2 + Cx^3 + \cdots$$

What are the A, B and C? (15%)

6. Solve the following PDEs (partial differential equations):

(a) Show that $c^2 \left(u_{rr} + \frac{1}{r} u_r \right) - u_{rr} = 0$ has solutions of the form

 $u(r,t) = \frac{V(r)}{r}\cos(nct)$, n = 0,1,2,... Find a differential equation for V(r). (10%)

(b) Solve the initial-value problem $u_x + 2u_y = 0$, $u(0, y) = 4e^{-2y}$. (10%)