52

國立成功大學九十八學年度碩士班招生考試試題

共4頁,第頁

系所組別: 光電科學與工程研究所

考試科目: 近代物理

考試日期:0307,節次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

總分共100分;選擇題60分,非選擇題40分

第一大項選擇題總分60分;12題皆為單選題,<u>每題答對得5分,每題答錯倒和1.5分,該題若不作答則該題以零分計算</u>,若總共答對所得的分數小於需要倒扣的分數,則選擇題部分總分以零分計算。請將選擇題答案整齊書寫於答案卷中,於題目卷中作答將不予計分。

- 1. A free particle of kinetic energy (KE) 3eV, traveling in a straight line, approaches a constant higher potential of +2.5eV. The particle will
 - (A) have a 100% probability to continue along at KE=0.5 eV.
 - (B) be reflected back at the boundary with 100% probability.
 - (C) have a 100% probability to decay exponentially in the barrier.
 - (D) lose energy in the 2.5 eV region until it stops.
 - (E) be partially reflected with KE=3 eV and partially transmitted with KE=0.5 eV.
- 2. The ground state wavefunction for a particle confined at a one-dimensional box of length L is ψ = (2/L)^{1/2} sin(πx/L). Suppose the length of the box is of 10.0 nm. What is the probability to find the particle between x = 4.9 nm and 5.1 nm?
 (A) 0.01 (B) 0.04 (C) 0.08 (D) 0.1 (E) 0.2
- 3. How many spectral lines appear in the Zeeman splitting of $^2D_{3/2} \rightarrow ^2P_{1/2}$ transition of sodium?
 - (A) 2 (B) 4 (C) 6 (D) 8 (E) 10
- 4. What is the wavelength of electrons that have been accelerated from rest through a potential difference of 1.20 kV?
 - (A) 3.54×10^{-11} m (B) 4.92×10^{-9} m (C) 1.26×10^{-12} m (D) 5.64×10^{-10} m (E) $8.63. \times 10^{-10}$ m

52

國立成功大學九十八學年度碩士班招生考試試題

共4頁,第2頁

系所組別: 光電科學與工程研究所

考試科目: 近代物理

考試日期:0307・節次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

- 5. The H₂⁺ molecule (singly ionized) has a ground state electron wavefunction that
 - (A) collapses from the Coulomb force between the electron and two protons.
 - (B) is symmetrical with respect to the two protons at fixed separations.
 - (C) is centered on one proton.
 - (D) is antisymmetrical with respect to the two protons at fixed separations.
 - (E) corresponds to ionic bonding.
- 6. What is the number of photons emitted by a 5 mW laser in 0.5s? Take the wavelength of the laser as 532 nm and assume 20% of efficiency.
 - (A) 6.23×10^{14} (B) 2.75×10^{15} (C) 1.34×10^{15} (D) 7.06×10^{15} (E) 1.14×10^{16}
- 7. The wavefunction for two identical spin 1/2 electrons with parallel spin projections ms = +1/2
 - (A) must vanish when the pair coincide in space.
 - (B) must be symmetric under the interchange of the electrons.
 - (C) must distinguish the two electrons from one another.
 - (D) must represent the probability for the electrons to be interchanged.
 - (E) must be the simple product of two single electron wavefunctions.
- 8. The speed of an electron is of 10⁵ ms⁻¹. What is the minimum uncertainty in its position?
 - (A) 3.65 nm (B) 1.52 nm (C) 0.12 nm (D) 0.58 nm (E) 0.06 nm
- 9. Consider the element $_{10}$ Ne, its ground state is
 - (A) $1S^21P^62S^2$
 - (B) $1S^2 2S^2 3S^2 3P^4$
 - (C) $1S^2 2S^2 2P^4 2d^2$
 - (D) $1S^2 2S^2 2P^6$
 - (E) $1S^2 3d^8$

52

國立成功大學九十八學年度碩士班招生考試試題

共4頁,第3頁

系所組別: 光電科學與工程研究所

考試科目: 近代物理

考試日期:0307, 節次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

- 10. In X-ray photoelectron measurement, a photon of wavelength 135 pm ejects an electron from the inner shell of an atom and it emerges with a speed of 2.0x10⁷ ms-1. What is the binding energy of the electron?
 - (A) 5.23 fJ (B) 0.15 fJ (C) 2.35 fJ (D) 3.56 fJ (E)1.29 fJ
- 11. A particular crystalline solid has an energy gap of 5.0eV between the valance band and the nearest conduction band. At $T \cong 0K$ the valence band is filled and the conduction band is empty. At room temperature ($T \cong 300K$)
 - (A) many electrons will be in the conduction band making this a semiconductor.
 - (B) many electrons will be in the conduction band making this an insulator.
 - (C) very few electrons will be in the conduction band making this a semiconductor.
 - (D) the valence and conduction bands will overlap making this like a metal.
 - (E) few electrons will be in the conduction band making this an insulator.
- 12. In an experiment on the Compton scattering of X-rays by electrons, the incident beam has wavelength 50.44 pm. What is the maximum wavelength of the scattered X-ray?
 - (A) 55.30 pm (B) 56.84 pm (C) 51.34 pm (D) 49.75 pm (E) 54.23 pm

第二大項為非選擇題總分 40 分,請將答案依序整齊書寫於答案卷中,於題目卷中作答將不予計分。

- 13. (10 分) (a) Consider the LS coupling, what are the ground state and the first excited state of a sodium atom? (b) When a sodium atom is placed in a weak magnetic field B, calculate the longest wavelengths of the electric dipole induced transition from the first excited state to the ground state.
- 14. (5 分) Please define and explain the effective mass of an electron in a semiconductor crystal.

52

國立成功大學九十八學年度碩士班招生考試試題

共4頁,第4頁

系所組別: 光電科學與工程研究所

考試科目: 近代物理

考試日期:0307:節次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

15. (10 分)名詞解釋

- (A) Lande interval rule
- (B) Cooper pair
- 16. (5 分) Please define and explain Blackbody radiation? (2 分) Please give an example.
- 17. (8 分) Consider an electron with the energy of 6.0 eV impinging on a potential barrier with 10 eV. The tunneling probability is calculated to be 4.5x10⁻⁵. Please estimate the width of the barrier.

Quantity	Symbol/Unit	Value
Angstrom unit	Å	$1 \text{ Å} = 10^{-1} \text{ nm} = 10^{-4} \mu \text{m}$
		$= 10^{-8} \text{ cm} = 10^{-10} \text{ m}$
Avogadro constant	NAVO	6.02204×10 ²³ mole ⁻¹
Bohr radius	a _B	0.52917 Å
Boltzmann constant	k	$1.38066 \times 10^{-23} \text{ J/K } (R/N_{AVO})$
Elementary charge	q	1.60218×10 ⁻¹⁹ C
Electron rest mass	m_0	0.91095×10^{-30} kg
Electron volt	eV	$1 \text{ eV} = 1.60218 \times 10^{-19} \text{ J}$
		= 23.053 kcal/mole
Gas constant	R	1.98719 cal/mole – K
Permeability in vacuum	μο	$1.25663 \times 10^{-8} \text{ H/cm} (4\pi \times 10^{-9})$
Permittivity in vacuum	€6	$8.85418 \times 10^{-14} \text{ F/cm } (1/\mu_0 c^2)$
Planck constant	h	$6.62617 \times 10^{-34} \text{ J-s}$
Reduced Planck constant	ħ	$1.05458 \times 10^{-34} \text{ J-s } (h/2\pi)$
Proton rest mass	M_{p}	$1.67264 \times 10^{-27} \text{ kg}$
Speed of light in vacuum	c	2.99792 × 10 ¹⁰ cm/s
Standard atmosphere		1.01325×10 ⁵ Pa
Thermal voltage at 300 K	KT/q	0.0259 V
Wavelength of I-eV quantum	λ	1.23977 μm