編號:

53

國立成功大學九十八學年度碩士班招生考試試題

共3頁,第1頁

系所組別: 光電科學與工程研究所

考試科目: 電子學

考試日期: 0307·節次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

1. For the ampilifer in the Fig. 1, let the parameters of transistors M1, M2 and Q1  $\mu_n C_{ox}$ =200 $\mu$ A/V<sup>2</sup>, V<sub>1</sub>=1V, (W/L)<sub>M1</sub>=10, (W/L)<sub>M2</sub>=20 and  $\beta$  (Q1)=499. Please find

- (a) Output DC voltage v<sub>o</sub> (10%)
- (b) Small signal voltage gain v<sub>0</sub>/v<sub>i</sub>. (10%)



- 2. The differential amplifier circuit of Fig. 2 utilizes a resistor connected to the negative power supply to establish the bias current I. where  $Q_1$  and  $Q_2$   $\alpha \sim 1$
- (a) For  $v_{B1}=v_{id}/2$  and  $v_{B2}=-v_{id}/2$  where  $v_{id}$  is a small signal with zero average, find the magnitude of the differential gain,  $|v_o/v_{id}|$  (5%)
- (b) For  $v_{Bi} = v_{B2} = v_{icm}$ , find the magnitude of the common-mode gain,  $|v_o/v_{icm}|$ . (5%)
- (c) Find the CMRR. (5%)



Fig. 2

編號:

國立成功大學九十八學年度碩士班招生考試試題

共3頁,第2頁

系所組別: 光電科學與工程研究所

考試科目: 電子學

考試日期:0307,節次:1

## ※ 考生請注意:本試題 ☑ □ □不可 使用計算機

- 3. The circuit shown in fig. 3 is intended to supply a voltage to floating loads while making greatest possible use of the available power supply.
- (a) Assuming ideal OP amps, sketch the voltage waveforms at nodes B and C for a
- 1-V peak-to-peak sine wave applied at node A. Also sketch the vo. (5%)
- (b) What is the voltage gain  $v_0/v_i$ . (5%)
- (c) Assuming that the OP amps operate from ±15-V power supplies and that their output saturates at ±14V. What is the largest sine wave output that can be accommodated? Specify both its peak to peak and rms values. (5%)



4. For the circuits in Fig. 4,  $\mu_n C_{ox} = 2.5 \ \mu_p C_{ox} = 20 \ \mu\text{A/V}^2$ ,  $|V_t| = 1\text{V}$ ,  $\lambda = 0$ ,  $\gamma = 0$ ,  $L = 10 \ \mu\text{m}$ , and  $W = 30 \ \mu\text{m}$ , unless otherwise specified. Find the labeled currents and voltages. (15%)



Fig. 4

編號:

53

國立成功大學九十八學年度碩士班招生考試試題

共3頁,第3頁

系所組別: 光電科學與工程研究所

考試科目: 電子學

考試日期:0307,節次:1

## ※ 考生請注意:本試題 ♥□可 □不可 使用計算機

5. For a digital logic inverter fabricated in a 0.8- $\mu$ m CMOS technology for which  $k_n$ ' = 120  $\mu$ A/V²,  $k_p$ ' = 60  $\mu$ A/V²,  $V_{tn} = |V_{tp}| = 0.7$  V,  $V_{DD} = 3$  V,  $L_n = L_p = 0.8$   $\mu$ m,  $W_n = 1.2$   $\mu$ m, and  $W_p = 2.4$   $\mu$ m, find:

- (a) the output resistance for  $v_0 = V_{OL}$ , and for  $v_0 = V_{OH}$  (5%)
- (b) the maximum current that the inverter can sink or source while the output remains within 0.1 V of ground or  $V_{DD}$ , respectively (5%)
- (c)  $V_{IH}$ ,  $V_{IL}$ , and noise margins  $NM_H$ ,  $NM_L$  (5%)
- (d) the peak current drawn from the 3-V supply during switching (5%)
- 6. For the transistor shown in Fig. 5, assume  $\alpha=1$  and  $v_{BE}=0.5$  V at the edge of conduction. What are the values of  $V_E$  and  $V_D$  for  $V_B=0$ V? For what value of  $V_B$  does the transistor cut off? Saturate? In each case, what values of  $V_E$  and  $V_C$  result? (15%)

