系所組別 平電科學與工程研究所乙組 考試科目 電子學 秦欽日期:0306 新次:1 ## ※ 考生請注意 本試題 □可 □不可 使用計算機 For the current mirror in the right figure derive an expression for the current transfer function [459/46] taking into account the BIT internal capacitances and neglecting r_s and r_s. Assume the BJTs to be identical, Observe that a signal ground appears at the collector of Q_s. If the mirror is biased at 1mA and the BJTs at this operating point are characterized by f₁=400MHz, $C_s=2pF$, and $\beta_0=\infty$, find (a)the frequencies of the pole (f_p) of the transfer function. $f_p=$ (7% (b)the frequencies of the zero (f_p) of the transfer function. $f_p=$ (6% 2. For the emitter follower in the right figure, the signal source is directly coupled to the transistor base. If the dc component of v_{nk} is zero, (a) find the dc emitter current (5%) is Assume [8=100. Neglecting 1_m. (b) find R_m. (5%), (c) the voltage gain v_{nk}(v_{nk}(5%), (d) the current gain v_{nk}(v_{nk}(5%), and (e) the output resistance R_m. (5%) 3. In the below figure, transistors Q_1 and Q_2 have V_1 =1V, and the process transconductance parameter k_n '=100 μ A/V², Assuming λ =0, find V_1 , V_2 , and V_3 for $(W/L)_1$ =1.5(W/L)₂, (12%) $$\begin{array}{c} +5V \\ \hline 40k\Omega \\ \hline V_1 \bullet & V_2 \\ \hline \end{array}$$ 系所組別: 光電科學與工程研究所乙組 考試科目: 電子學 #EE: 考試日期:0306・軽次:1 ## ※ 考生請注意:本試類 □ □ □ 不可 使用計算機 4.(a)Use the superposition principle to find the output voltage of the circuit shown in Fig.1.(b) If in the circuit of Fig.1 the 1-k Ω resistor is disconnected from ground and connected to a third signal source ν_3 , use superposition to determine ν_0 in term of ν_1 , ν_2 and ν_1 (10%) - 5. Consider a Si n-channel MOSFET with channel width $W=15~\mu m$, length $L=2~\mu m$, gate oxide thickness $t_{cs}=0.5~\mu m$, dielectric constant $t_{cs}=3.9$. Assume that the drain current in the saturation region for $V_{DS}=0.10V$ is $I_D=3.5mA$ at $V_{GS}=1.5V$ and $I_D=75~mA$ $V_{GS}=2.5V$. (a)Please find the inversion carrier mobility (μ_a) in channel and the threshold voltage(V_T). (b)please comment the determined μ_a compared with the bulk mobility.(10%) - 6. As shown in Figure 2, if the five light output power-current (L-I) curves correspond to a GaAs LED operated at different pulsed injection currents, i.e., different duty cycles, which is defined in the inset of Figure 2. Please identify which of the following item(s) is/are) true.(A)duty1> duty 2(B) duty 3> duty 4(C) duty 2> duty 5(D) duty 3> duty 2(E) duty 5> duty 4(2%) #4 百,第7百 系所組別: 光雷科學與工程研究所乙組 細跡: 考試科目: 電子學 考試日期:0306·動次:1 ※ 考生請注意:本試願 □可 □不可 使用計算機 Under thermal equilibrium, which of the following approache(s) can create a built-in electric field in a semiconductor?(A)p-n junction(B) spatial variation of doping concentration(C)n-type GaAs(D)intrinsic Si.(2%) 8. The zener diode in the circuit of Figure 3 is specified to have V_Z =6.8V at I_Z =5 $mA.r_z=20 \Omega$ and $I_{zt}=0.2 mA$. The power supply voltage $V^+=10V$. (A) $V_0 = 6.83$ V with no load (B) $I_1 = 13.6$ mA when $R_1 = 0.5$ K Ω (C) $V_0 = 5$ V when $R_1 = 0.5K\Omega$ (D) $I_z = 6.35$ mA with no load (6%) - 9. The threshold voltage will increase for a n-channel MOS FET when (A)increase the reverse bias of substrate increase (B) decrease the doping concentration of substrate (C)increase the thickness of gate oxide (D) increase the gate length. (3%) - 10. Which of the following statement(s) is/are) true(A)The BJT transconductance increases exponentially with respect to V_{BF}.(B)The MOS FET's transconductance increases linearly with respect to VGS.(C)A PMOS FET has four terminals(D)Compared with MOS FET, BJT device has higher input impedance. (3%) 編號: 44 ## 國立成功大學九十九學年度碩士班招生考試試題 共 4 頁 第 4 頁 系所組別 光電科學與工程研究所乙組 考試科目: 電子學 考試日期:0306·箭次:1 ## ※ 考生請注意:本試題 ☑可 □不可 使用計算機 - 11. Please identify the following schematic device. - (a)____(2%) (b) (2%) 12. Determine the output voltage V_0 in the following circuit when (a) $V_1{=}V_2{=}5V$ (5%)(b) $V_1{=}$ 5V, $V_2{=}0$. Assume that the D_1 is identical to D_2 with $r_D{=}30~\Omega$, $V_{D0}{=}0.6V(5\%)$