系所組別: 光電科學與工程研究所甲、乙組 考試科目: 電磁學 考試日期: 0306· 節次: 2 ## ※ 考生請注意:本試題 ☑可 □不可 使用計算機 - Consider a rectangular waveguide, infinitely long in the x-direction, with a width (y-direction) 2 cm and a height (z-direction) 1 cm. The walls are perfect conductor (Fig. 1). - (a) What are the boundary conditions on the components of B and E at the walls? (5 %) (b) Write the wave equation which describes the B and - Ë fields of the lowest mode. (5 %) - (c) For the lowest mode that can propagate, find the phase velocity and the group velocity. (5 %) - Consider a TM plane wave incident obliquely from an isotropic medium with permittivity ε and permeability μ upon another isotropic medium with permittivity ε and permeability μ. (See Fig. 2). - (a) Please derive the reflection and transmission coefficients. (5 %) - (b) Please derive the conditions of total reflection. Please derive the field components of \vec{B} and \vec{E} at region t when total reflection occurs. (10%) - (c) If both ε_t and μ_t are negative values, please derive and plot the directions of wave vector, Poynting vector and electric field vector of the transmitted wave. (5 %) Fig. 2 - (a) Consider a wave packet that consists of two traveling waves having equal amplitude and slightly different angular frequencies ω₀ + Δω and ω₀ − Δω (Δω << ω₀). Please derive the group velocity u_G of this wave packet. (5 %) - (b) Consider plasma with the free electron charge q_e , mass m_e and density N_e . Assume the plasma is collisionless (no collision loss). Please derive the effective permittivity of the plasma in terms of plasma frequency $\omega_e = \sqrt{N_e} q_e^{-3} (m_e \epsilon_e)$. (5 %) - (c) Prove the following relation between group velocity u_G and phase velocity u_F in the plasma of part (b): $u_G = u_B \lambda \left(\frac{d}{du_B} / d\lambda \right)$, where λ is the wavelength. (5 %) ## (背面仍有題目.請繼續作签) 經濟 46 ## 國立成功大學九十九學年度碩士班招生考試試顯 共 2 百・第 2 百 系所組別 光電科學與工程研究所甲、乙組 考試科目: 電磁學 番駄日類:0306·新次:2 ## ※ 考生請注意:本試題 □ □ 不可 使用計算機 4. Dielectric lenses can be used to collimate EM fields. In the plot below, the left surface of the lens is that of a circular cylinder, and the right surface is a plane. If Ē₁ at point P (r₀, 30°, z) in region 1 is 5ā_x - 3ā_x, what must be the dielectric constant of the lens in order that Ē₂ in region 3 is parallel to the x-axis. (15%) - An uncharged sphere of radius b is placed in an initially uniform electric field E ₀ = a ₁E ₀ in air. Determine the electric potential V(R,θ) and the electric field intensity E (R,θ) both inside and outside the sphere after its introduction if (20%) - (a) the sphere is made of conductor, assuming V(b,0) = 0. (10%) - (b) the sphere is made of dielectric with a dielectric constant ε_{c} . (10%) - A very long, straight wire and a conducting circular loop of radius of b are arranged as shown below. ($$\int \frac{d\theta}{p+q\cos\theta} = \frac{\pi}{\sqrt{p^2-q^2}}$$) (159) - (a) Determine the mutual inductance between them. (5%) - (b) Find the force on the circular loop that is exerted by the magnetic field due to an upward current I₁ in the long straight wire. The circular loop carries a current I₂ in the counterclockwise direction. (5%) - (c) Assume that the circular loop is rotated about its horizontal axis by an angle α , find the torque exerted on the circular loop. (5%)