國立成功大學 110學年度碩士班招生考試試題

編 號: 61

系 所: 生物科技與產業科學系

科 目: 分子生物學

日 期: 0203

節 次:第2節

備 註:不可使用計算機

編號: 61

國立成功大學 110 學年度碩士班招生考試試題

系 所:生物科技與產業科學系

考試科目:分子生物學

考試日期:0203,節次:2

第1頁,共4頁

* =	传生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。					
\	單選題: (60%,每題 2.5 分)					
(1) -	A chromosome is best defined as:					
	(A) the complete sequence of a gene, including sequences removed from the RNA product.					
	(B) the functional coding sequences of a single DNA molecule.					
	(C) the complete set of hereditary information of an organism.					
	(D) a linear array of genes.					
	(E) the sequence of a gene that has coding information for the polypeptide product.					
(2) \	are a special class of eukaryotic miRNAs that are active in germ cells.					
	(A) CRISPRs. (B) CUTs. (C) piRNAs (D) siRNAs. (E) sRNAs.					
(3)	RNA generally functions as a regulator by:					
	(A) base-pairing with a single-stranded region. (B) influencing ribosomal activity.					
	(C) recruiting proteins to gene promoters. (D) catalyzing biochemical reactions.					
	(E) participating in chromatin remodeling					
(4)						
(4)	Which of the following sequences is inversely palindromic? (A) 5' GCATGC 3' (B) 5' GCAACG 3' (C) 5' GCAT 3'					
	(A) 5' GCATGC 3' (B) 5' GCAACG 3' (C) 5' GCAT 3' (D) 5' GCAACGC 3' (E) 5' GGAAAAGG 3'					
	D) 3 GCAACGC 3 (E) 3 GGAAAAGG 3					
(5)	(5) In a plasmid vector, the purpose of the lacZ gene is:					
	(A) to allow replication of the plasmid.					
	(B) to allow selection of transformed bacterial cells.					
	(C) to allow the plasmid to be cut once for cloning a fragment.					
	(D) to protect the plasmid from digestion by exonucleases.					
	(E) as an indicator that the plasmid is recombinant, containing a DNA insert					
(6)	In many multicellular eukaryotic genes, different polypeptides can be produced from the same stretch					
	of DNA duplex primarily due to:					
	(A) genes found within the introns of a larger gene.					
	(B) alternative splicing of the mRNA transcript.					
	(C) extensive somatic recombination in individual cells.					
	(D) multiple open reading frames in the same sequence.					
(E) different genes on the two complementary strands.						
(7) 、	All are maternally inherited.					
	(A) plant mitochondrial genes (B) plant nuclear genes (C) animal mitochondrial genes					
	(D) animal nuclear genes (E) plant chloroplast genes					

編號: 61

國立成功大學 110 學年度碩士班招生考試試題

所:生物科技與產業科學系

考試科目:分子生物學

考試日期:0203,節次:2

第2	百		11-1	百
554		,	-	13

(8) . The core histones do not include:									
(A) H1.	(B) H2A.	(C) H2B.	(D) H3.	(E) H4.					

- (9) · An activator that does not have an activating domain:
 - (B) must also not have a DNA-binding domain. (A) must directly interact with RNA polymerase.
 - (C) may require a coactivator with an active domain. (D) is mutant and cannot activate a gene.
 - (E) is called a repressor.
- (10) · Which statement best describes the relationship between methylation and gene activity?
 - (A) DNA methylation is generally associated with transcriptional inactivity.
 - (B) DNA methylation is generally associated with translational inactivity.
 - (C) DNA methylation is generally associated with transcriptional activity.
 - (D) Histone methylation is generally associated with transcriptional inactivity.
 - (E) Histone methylation is generally associated with transcriptional activity.
- (11) . The wobble hypothesis states that:
 - (A) codon-anticodon pairing must only follow the standard base-pairing rules at the first two codon positions.
 - (B) some mutations introduce termination codons.
 - (C) most amino acids have more than one codon representing them.
 - (D) an mRNA may encode more than one polypeptide, and the ribosome may "wobble" or begin at alternate start codons.
 - (E) mutations are less likely to occur at the third base of the codon.
- (12) . The ribosomal E site:
 - (A) binds aminoacyl-tRNA.
- (B) binds the peptidyl-tRNA.
- (C) binds the Shine-Dalgarno sequence.
- (D) transiently binds deacylated tRNA.
- (E) binds the mRNA start codon.
- (13) The stem-loop structure at the 3' end of a bacterial mRNA functions primarily in:
 - (A) termination of translation. (C) termination of transcription.
- (B) regulating the frequency of translation. (D) mRNA stability.
 - (E) mRNA transport.
- (14) · U1 snRNA has a single-stranded 5' end that is able to base-pair with the:
 - (A) 5'cap.
- (B) branch site.
- (C) 3' splice site.
- (D) 5' splice site. (E) promoter

- (15) snoRNAs are required for:
 - (A) processing and modification of rRNAs.
- (B) 3' mRNA polyadenylation.
- (C) processing and modification of tRNAs.
- (D) pre-mRNA splicing.

(E) 5' mRNA capping.

編號: 61 國立成功大學 110 學年度碩士班招生考試試題

系 所:生物科技與產業科學系

考試科目:分子生物學

考試日期:0203,節次:2

第3頁,共4頁

(16) · Eukaryotic Ri	NA polymerase II s	ynthesizes:			
(A) 5S rRNA.	(B) 28S rRNA.	(C) mRNA.	(D) 18S rRNA.	(E) tRNAs.	
(17) · An enhancer		the gene	it affects.		
(A) must be upst	ream from	(B) can be	e very distant from		
(C) cannot be wi	thin an intron of	(D) must b	e in the same orien	tation as	
(E) must be dow	nstream from				
(40) Which of the	fallouder to relati			- f.th ft2	
				of the promoter by sigma factor?	
(A) The -35 elen			on between the -10		
(C) The -10 elem			nding the startpoint		
(E) The sequence	e of the region bet	ween the -10 and	a –35 elements		
(19) · Rearrangeme	ent of host DNA ma	ay result from:			
(A) replicative tr	ansposition.	(B) unequal cros	ssing over between	transposon copies.	
(C) nonreplicativ	e transposition.	(D) reverse tran	scription and integr	ation of retrotransposons.	
(E) homologous	recombination bet	tween transposor	n copies.		
(20) · What percen	tage of the human	genome codes fo	or the amino acids i	n our proteins?	
(A) 15% (B) 2				proteins	
		(5) about	7.570 (2,7070		
(21) · A replication			*		
	eplication is unidir				
	(B) is flanked by regions of nonreplicated DNA.				
			or already has been	replicated.	
	eplication is bidire	ectional.			
(E) All of these a	re correct.				
(22) . The following	recombination fr	equencies were f	ound for four genes	(A, B, C and D) on the same	
chromosome: be	etween genes A an	d B – 45%, betwe	een genes C and D -	10%, between A and D – 7%,	
between genes (between genes C and B $-$ 18%, between genes C and A $-$ 17%, and between genes B and D $-$ 28%.				
What was the or	der of the genes o	n the chromoson	ne?		
(A) A - B - C - D	(B) B – A	-C-D	(C) A - D - C - B		
(D) A - C - D - B	(E) C – A	- D - B			
(23) . The 2' and of	most eukarvotic n	nRNAs contains a	while the	5' end has a	
			write the :	end has a	
(A) poly(A) tail, methylated guanosine cap					
	(B) poly(U) tail, methylated guanosine cap (C) methylated guanosine cap, poly(A) tail				
	ulfonated guanosi				
(b) poly(A) tall, s	anonateu gudilusi	пссар			

國立成功大學 110 學年度碩士班招生考試試題

編號: 61. 國立成功 系 所:生物科技與產業科學系

考試科目:分子生物學 考試科期:0203,節次:2

第4頁,共4頁

(24) \ Proteomics is defined as the (A) linkage of each gene to a particular protein (B) study of the full protein set encoded by a genome (C) totality of the functional possibilities of a single protein (D) study of how amino acids are ordered in a protein — 、問答題(40%。每題 10 分) 1. Please define what is a gene? Which included how many elements in single gene? (10 points) 2. What is siRNA (RNA interference) approach? Please describe siRNA is how to work and how to	
knockdown the gene expression? (10 points)	
3. If you want to knockout P53 gene from zebrafish genome what do you do? (10 points)	
4. Please describe what is an autophagy? It plays what kind of biological functions within cell? (10 points)