Show your steps clearly．Credit will be given for all the steps and derivations leading to the final results of the calculations．

1．Given a 2×2 matrix

$$
\mathbf{M}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),
$$

where a, b, c and d are real numbers，consider the matrix equation

$$
\mathbf{M} \mathbf{x}=\lambda \mathbf{x},
$$

where λ represents a constant，and $\mathbf{x}=\binom{x_{1}}{x_{2}}$ is a 2－by－1 matrix of which the elements x_{1} and x_{2} are to be solved for．
（a）One can find non－trivial solutions for \mathbf{x} ，that is， $\mathbf{x} \neq\binom{ 0}{0}$ only for certain special values of λ ．
Find all those special values of λ in terms of a, b, c and $d .(9 \%)$
（b）For each of those special values of λ ，find the corresponding \mathbf{x} such that $x_{1}=1$ ．（6\％）
2．（a）For the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=0
$$

find solutions of the form $y=x^{p}$ ，where p is a constant．（6\％）
（b）Find the most general form of the solution to the following second－order ordinary differential equation：

$$
x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{4} \cos x
$$

3．（a）Find the leading behavior of

$$
y(x)=\int_{x}^{1} d t \sin (x t) \quad \text { as } x \rightarrow 0^{+}
$$

by giving the first three terms of the expansion．（6\％）
（b）Find the first three terms of the asymptotic expansion of

$$
y(x)=\int_{x}^{\infty} d t \sin \left(t^{2}\right) \quad \text { as } x \rightarrow \infty
$$

4．Use Fourier transform to solve for $f(x, t)$ in the partial differential equation

$$
\frac{\partial f}{\partial t}=D \frac{\partial^{2} f}{\partial x^{2}}
$$

along with initial condition $f(x, 0)=\delta(x)$ ，where D is a positive constant and δ denotes the Dirac delta function．（20\％）

5．Given $\mathbf{F}=\left(x+y^{2}+z^{2}\right) \hat{x}+\left(x^{2}+y+z^{2}\right) \hat{y}+\left(x^{2}+y^{2}+z\right) \hat{z}$ in Cartesian coordinates．Find the value of the surface integral $\int_{S}(\mathbf{F} \cdot \hat{\mathbf{n}}) d a$ ，where the surface S is a spherical surface with equation $x^{2}+y^{2}+(z-1)^{2}=1$（i．e．spherical surface with center at $(x, y, z)=(0,0,1)$ and unit radius），$\hat{\mathbf{n}}$ is the unit vector normal to the surface and pointing outward，and $d a$ is the differential area．（ 15% ）

6．For the probability distribution function

$$
P(x)=\frac{1}{2 \pi \lambda} \int_{0}^{\infty} \frac{d \sigma}{\sigma^{2}} \exp \left[-\frac{\ln ^{2}\left(\sigma / \sigma_{0}\right)}{2 \lambda^{2}}\right] \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) \quad \text { for }-\infty<x<\infty,
$$

where σ_{0} and λ are positive constants，
（a）verify that $\int_{-\infty}^{\infty} P(x) d x=1 ;(5 \%)$
（b）calculate the mean and the variance of the distribution．（15\％）

