系所組別：太空與電漿科學研究所

考試科目：應用數學
考式日期：0223，節次： 3
※ 考生請注意：本試題不可使用計算機
［1］（A total of 20 points）
（a）（3 points）An equation of motion of one dimensional oscillator is given by

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=-k x \tag{1}
\end{equation*}
$$

where t is time，$x(t)$ is the position of the point mass m ，and k is the spring constant．Normalizing time by $\sqrt{m / k}$ and length by the oscillation amplitude A ，obtain a dimensionless equation

$$
\begin{equation*}
\frac{d^{2} X}{d T^{2}}=\ddot{X}=-X \tag{2}
\end{equation*}
$$

Here，the dot operator stands for $d / d T, T=(\sqrt{k / m}) t$ ，and $X=x / A$ ．Using the initial conditions $\dot{X}(T=$ $0)=1$ and $X(T=0)=0$ ，solve Eq．（2）for $X(T)$ ．
（b）（7 points）An equation of motion of a damping oscillator is given by

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=-k x-\nu \frac{d x}{d t} \tag{3}
\end{equation*}
$$

where ν is a friction constant．As in（a），normalize Eq．（3）to obtain

$$
\begin{equation*}
\ddot{X}=-X-\epsilon X . \tag{4}
\end{equation*}
$$

What is ϵ in terms of m, k ，and ν ？Using the initial conditions $\dot{X}=1$ and $X=0$ ，solve Eq．（4）to obtain an exact solution $X_{\text {exact }}(T)$ ．
（c）（ 5 points）Let us solve（b）by a perturbation method．By assuming $\epsilon \ll 1$ ，we apply an expansion

$$
\begin{equation*}
X=X_{0}+\epsilon X_{1}+\epsilon^{2} X_{2}+\ldots \tag{5}
\end{equation*}
$$

to Eq．（4）．We separate the equations order by order in terms of a small parameter ϵ in the perturbation method．For example，at the lowest order $[O(1)]$ ，we obtain

$$
\begin{equation*}
\ddot{X}_{0}=-X_{0} . \tag{6}
\end{equation*}
$$

At the order $\epsilon[O(\epsilon)]$ ，we obtain

$$
\begin{equation*}
\ddot{X}_{1}=-X_{1}-X_{0}, \tag{7}
\end{equation*}
$$

where the solution of X_{0} from Eq．（6）is substituted to the right side of Eq．（7）．Solve Eq．（6）for $X_{0}(T)$ using the initial conditions $\dot{X}_{0}=1$ and $X_{0}=0$ ．Solve Eq．（7）for $X_{1}(T)$ using the initial conditions $\dot{X}_{1}=0$ and $X_{1}=0$ ．
（d）（5 points）Continue the expansion of Eq．（4）to obtain the equation at $O\left(\epsilon^{2}\right)$ ．Solve the $O\left(\epsilon^{2}\right)$ equation for $X_{2}(T)$ using initial conditions $\dot{X}_{2}=0$ and $X_{2}=0$ ．By adding $X_{\text {pert }}=X_{0}+\epsilon X_{1}+\epsilon^{2} X_{2}$ ，obtain the approximate solution $X_{\text {pert }}$ ．Compare the solution with the exact solution in（b）（hint：do a Taylor expansion of $\left.X_{\text {exact }}\right)$ ．To what order in ϵ is the approximate solution correct？

系所組別：太空與電漿科學研究所
考試科目：應用數學
※ 考生請注意：本試題不可使用計算機
［2］（A total of 25 points）
（a）（10 points）A one dimensional heat conduction equation is given by

$$
\begin{equation*}
\frac{\partial T(x, t)}{\partial t}=\frac{\partial^{2} T(x, t)}{\partial x^{2}} \tag{8}
\end{equation*}
$$

in a domain $0 \leq x \leq 1$ and $t \geq 0$ ．
As suggested in Fig．2，the initial condition is given by

$$
\begin{equation*}
T(x, 0)=1-x^{2} \tag{9}
\end{equation*}
$$

Take boundary conditions $T(0, t)=1$ and $T(1, t)=0$ ．Draw the expected profile of T at $t \rightarrow \infty$ ．Solve Eq．（8） for $T(x, t)$ ．
（b）（ 10 points）Solve Eq．（8）for $T(x, t)$ by taking the initial condition Eq．（9），and boundary conditions $\partial_{x} T(0, t)=0$ and $T(1, t)=0$ ．Draw the expected profile of T at $t \rightarrow \infty$ ．
（c）（5 points）In（b），we would like to find a steady state solution（means the T profile do not evolve with time）by adding a constant source term S

$$
\begin{equation*}
\frac{\partial T(x, t)}{\partial t}=\frac{\partial^{2} T(x, t)}{\partial x^{2}}+S \tag{10}
\end{equation*}
$$

Obtain the value of S ．
Fig． 2

系所組別：太空與電漿科學研究所

考試科目：應用數學

※ 考生請注意：本試題不可使用計算機
［3］（A total of 15 points）
（a）（5 points）Consider a one－way wave equation，

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=-c \frac{\partial}{\partial x} u(x, t) . \tag{11}
\end{equation*}
$$

where $c>0$ is a constant．Show that $u(x, t)=f(x-c t)$ can be a solution in general．${ }^{1}$ Does the wave move to the right or to the left，and why？The lines given by $x-c t=$ constant are called characteristic curves．Draw the characteristic curves taking x as the abscissa and t as the ordinate．
Take $c=1$ for the moment．If a wave form of

$$
u(x, 0)= \begin{cases}\sin (\pi x) & \text { for } 0 \leq x \leq 1 \tag{12}\\ 0 & \text { otherwise }\end{cases}
$$

is taken as an initial condition，what will be the wave shape at $t=1$ ？Draw the wave shape in a 3D figure within $0 \leq x \leq 4$（see Fig．3）and comment on how the wave propagates．
（b）（ 5 points）We replace c by $2 t$ in Eq．（11）．Draw the characteristic curves on the $x t$－plane．As in（a）， taking Eq．（12）as an initial condition，draw the wave shape at $t=1$ in a 3D figure within $0 \leq x \leq 4$ ．
（c）（5 points）Finally，we replace c by $u(x, t)$ in Eq．（11）．${ }^{2}$

$$
\frac{\partial}{\partial t} u(x, t)=-u(x, t) \frac{\partial}{\partial x} u(x, t) .
$$

Show that in this nonlinear case，$u(x, t)=g(x-u t)$ can be a solution in general．We take

$$
u(x, 0)= \begin{cases}2 & \text { for } x<0 \\ 2-x & \text { for } 0 \leq x \leq 1 \\ 1 & \text { for } x>0\end{cases}
$$

as an initial condition．Draw the characteristic curves on the $x t$－plane．Draw the shape of $u(x, t)$ at $t=0$ and $t=1$ in a 3D figure within $0 \leq x \leq 4$ ．Comment on what happens after $t=1$ ．

Fig． 3

[^0]
系所組別：太空與電鼎科學研究所

考試科目：應用數學

※ 考生請注意：本試題不可使用計算機
［4］（A total of 20 points）
（a）（4 points）Integrate $f(z)=(z-\alpha)^{n}$ along a circle C（radius r ，centered at α ）．Prove

$$
\int_{C}(z-\alpha)^{n} d z=\left\{\begin{array}{ll}
2 \pi i & \text { for } n=-1 \\
0 & \text { for } n \neq-1
\end{array} .\right.
$$

Here，z and α are complex numbers and $i=\sqrt{-1}$ is the imaginary unit．
（b）（4 points）Prove Cauchy＇s integral theorem

$$
\int_{C} f(z) d z=0
$$

Here，$f(z)$ is a holomorphic function in a complex domain D ，while C is a closed loop within D ．You can use the Cauchy－Riemann differential equations for the proof．
（c）（4 points）Prove Cauchy＇s integral formula

$$
f(\alpha)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-\alpha} d z
$$

Here，$f(z)$ is a holomorphic function in a complex domain D ，and C is a closed＂counter－clockwise＂loop within D ．Employing Cauchy＇s integral formula estimate

$$
I_{1}=\int_{\gamma} \frac{\cos (z)}{z+i} d z
$$

where γ is a circle of radius 1 with its center located at $z=-i$ ．
（d）（4 points）When $f(z)$ is expanded in the form

$$
f(z)=\sum_{k=-\infty}^{\infty} a_{k}(z-\alpha)^{k}
$$

the coefficient＂a_{-1}＂is called the residue of $f(z)$ at α ，which is described by＂Res $\left.f(z)\right|_{z=\alpha \text {＂．Prove Cauchy＇s }}$ residue theorem

$$
\int_{C} f(z) d z=\left.2 \pi i \sum_{k=1}^{m} \operatorname{Res} f(z)\right|_{z=\alpha_{k}}
$$

where m is the number of isolated singular points α_{k} inside the loop C ．
（e）（4 points）Using the residue theorem estimate

$$
I=\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x
$$

※ 考生請注意：本試題不可使用計算機
［5］（A total of 20 points）
（a）（ 6 points）Consider a system of simultaneous ordinary differential equations given by

$$
\begin{aligned}
& \frac{d x}{d t}=y+z, \\
& \frac{d y}{d t}=z+x, \\
& \frac{d z}{d t}=x+y .
\end{aligned}
$$

We would like to write the three equations in a matrix form

$$
\frac{d \mathbf{u}}{d t}=\mathbf{A} \cdot \mathbf{u}
$$

where $\mathbf{u}^{t}=(x, y, z)$ and \mathbf{A} is a 3×3 matrix．Write the nine components of \mathbf{A} explicitly．Obtain eigenvalues and eigenvectors of the matrix \mathbf{A} ．
（b）（6 points）Is the matrix \mathbf{A} diagonalizable？If yes，find a matrix \mathbf{P} which satisfies $\mathbf{P}^{t} \mathbf{A P}=\mathbf{D}$ ．Here， \mathbf{P}^{t} is a transpose of \mathbf{P} and \mathbf{D} is a diagonal matrix．
（c）（4 points）Obtain the solutions for $x(t), y(t)$ ，and $z(t)$ taking initial conditions $\left.(x, y, z)\right|_{t=0}=(1,1,1)$ ．
（d）（4 points）Obtain the solutions for $x(t), y(t)$ ，and $z(t)$ taking initial conditions $\left.(x, y, z)\right|_{t=0}=(-2,1,1)$ ． What are the solutions at $t \rightarrow \infty$ ？

[^0]: ${ }^{1}$ The familiar sinusoidal form，$f(x-c t)=\sin (x-c t)$ is one of the solutions．
 ${ }^{2}$ The right side corresponds to a convective derivative．

