系所組別：太空與電漿科學研究所

考試科目：電磁學
※ 考生請注意：本試題不可使用計算機
－Calculation processes have to be described．
－System of unit used in the problems of this examination is SI unit system unless stated．
－Characters representing physical constants listed up below are available if necessary： Elementary charge：$e[\mathrm{C}]$ ，permittivity of vacuum：$\varepsilon_{0}\left[\mathrm{~m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}\right]\left(\right.$ or $\left.\left[\mathrm{F} \cdot \mathrm{m}^{-1}\right]\right)$ ， permeability of vacuum：$\mu_{0}\left[\mathrm{~m} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-2}\right]$（or $\left[\mathrm{H} \cdot \mathrm{m}^{-1}\right]$ ），speed of light in vacuum：$c\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ ．

I．Problems about electrostatic field（ 25% ）
i．Electric charge fills a space in the region of $0<x<d$ uniformly（electric charge density is ρ ）．Find the spatial profile of the electric field $E(x)$ ．The electric field E for $x<0$ is zero．Here，x is a coordinate of a Cartesian coordinate system．（ 5% ）
ii．There are concentric two spheres，whose radii are a and $b(<a)$ ．Electric charge +Q $(\mathrm{Q}>0)$ is uniformly distributed and fixed on the surface of the sphere with a radius of a ，and electric charge -Q is uniformly distributed and fixed on the surface of the sphere with a radius of b ．Find the spatial profile of the scalar potential ϕ as a function of radius r ．Use the following three conditions：

1）．$\phi \longrightarrow 0$ for $r \longrightarrow \infty$ ．2）．ϕ is finite as $r \longrightarrow 0$ $0.3) . \phi$ is continuous at $r=a$ and $r=b$ ．
（8\％）
iii．Three positive point charges q_{A}, q_{B} and q_{C} are put and fixed on the line l with the same intervals a ．Evaluate the Coulomb force acting to each point charge when an enough thin and sufficiently wide conducting plate is put at the middle point between B and C vertically to the line l as shown in Fig．1．Positive direction of the force is defined as the direction from A to C ．
（4\％each，12\％）

Fig． 1
※ 考生請注意：本試題不可使用計算機
II．Electric field in dielectric medium：（5 \％each，total 25% ）
As shown in Fig．2，the region between two electrodes of a parallel－plate capacitor is filled with two dielectric media 1 and 2 ，whose thicknesses and dielectric constants are d_{1}, d_{2} and $\varepsilon_{1}, \varepsilon_{2}$ ，respectively．The potential difference between the two electrodes is $\Delta \phi$ ．Find the electric fields（ E_{1}, E_{2} ）and electric flux densities（ D_{1}, D_{2} ）in each dielectric medium．Also，find the surface density of polarization charge at the interface between the dielectric media 1 and $2, \sigma_{p}$ ．

Fig． 2
III．Cyclotron radiation：（ 15% ）
Radiation power W（per unit solid angle $\mathrm{d} \Omega$ ）emitted from a charged particle having a uniform circular motion is expressed by the following equation．Electric charge of the particle is q and the rotation center and the rotation plane are the origin and the $x-y$ plane，respectively as shown in Fig． 3.
$\frac{\mathrm{d} W}{\mathrm{~d} \Omega}=\frac{q^{2}}{16 \pi^{2} \varepsilon_{0} \mathrm{c}^{3}}\left|\frac{R}{R} \times\left(\frac{R}{R} \times \frac{\mathrm{d} v}{\mathrm{~d} t}\right)\right|^{2}$.

Here， \boldsymbol{R} and \boldsymbol{v} are and the position vector of the observation point P and the velocity vector of the charged particle，respectively．

Fig． 3

Rewrite $\mathrm{d} W / \mathrm{d} \Omega$ as a function of ω, θ ，and a ．
Here，ω, θ and a are the angular frequency of the circular motion，the zenith angle of the observation point and the radius of the circular motion，respectively．［Hint： $\boldsymbol{R} / \boldsymbol{R}$ can be written as $\boldsymbol{R} / R=(\sin \theta, 0, \cos \theta)$ without loss of generality．］

編號： 58

系所組別：太空與電漿科學研究所
※ 考生請注意：本試題不可使用計算機

IV．Interface between different media：（ 10% each，total 20% ）
Two kinds of dielectric medium（1 and 2）contact at an interface．A plane electromagnetic wave is injected perpendicularly into the interface plane．Find the reflection and transmission coefficients of the electromagnetic wave for the following situation．The reflection rate is defined as a ratio between energy fluxes the reflected wave of and the incident wave．The transmission rate is defined as a ratio between energy fluxes of the transmitted wave and the incident wave：

Use the following parameters：electric permittivity ε_{1} and ε_{2} ，permeability $\mu_{I}=\mu_{2}$ $=\mu_{0}$ ．The suffices 1 and 2 represent the two kind of the dielectric media．

V．A plane electromagnetic wave propagates in z direction in vacuum，whose x and y components of the wave electric field are written in the following forms，respectively： （ 15% ）
$E_{x}(z, t)=f_{1}(z-c t)+g_{1}(z+c t)$,
$E_{y}(z, t)=f_{2}(z-c t)+g_{2}(z+c t)$.
Here，$f_{1,2}(u), g_{1,2}(u)$ are functions of only $u . c=1 /\left(\varepsilon_{0} \mu_{0}\right)^{1 / 2}$ ．
（i）Derive the x and y components of the wave magnetic field $B_{x}(z, t)$ and $B_{y}(z, t)$ ． （10\％）
（ii）Find the z component of the Poynting vector S_{z} ．

