編號: 58	國立成功大學103學年度碩士班招生考試試題	共3頁,第1頁
系所組別:太空與電缆	浆 科學研究所	
考試科目:電磁學		考試日期:0222,節次:2

※考生請注意:本試題不可使用計算機

- Calculation processes have to be described.
- System of unit used in the problems of this examination is SI unit system unless stated.
- Characters representing physical constants listed up below are available if necessary: Elementary charge: e [C], permittivity of vacuum: ε_0 [m⁻³ kg⁻¹ s⁴ A²](or [F·m⁻¹]), permeability of vacuum: μ_0 [m kg s⁻² A⁻²] (or [H·m⁻¹]), speed of light in vacuum: c [m s⁻¹].
 - I. Problems about electrostatic field (25 %)
 - i. Electric charge fills a space in the region of 0 < x < d uniformly (electric charge density is ρ). Find the spatial profile of the electric field E(x). The electric field E for x < 0 is zero. Here, x is a coordinate of a Cartesian coordinate system. (5%)
 - ii. There are concentric two spheres, whose radii are a and b (< a). Electric charge +Q (Q > 0) is uniformly distributed and fixed on the surface of the sphere with a radius of a, and electric charge -Q is uniformly distributed and fixed on the surface of the sphere with a radius of b. Find the spatial profile of the scalar potential ϕ as a function of radius r. Use the following three conditions:

1).
$$\phi \longrightarrow 0$$
 for $r \longrightarrow \infty$. 2). ϕ is finite as $r \longrightarrow 0$. 3). ϕ is continuous at $r = a$ and $r = b$.
(8 %)

iii. Three positive point charges q_A , q_B and q_C are put and fixed on the line l with the same intervals a. Evaluate the Coulomb force acting to each point charge when an enough thin and sufficiently wide conducting plate is put at the middle point between B and C vertically to the line l as shown in Fig. 1. Positive direction of the force is defined as the direction from A to C.

(4% each, 12%)

Conductor plate a a/2 a/2 $q_A q_B q_C$ A B C

Fig. 1

(背面仍有題目,請繼續作答)

編號: 58	國立成功大學103學年度碩士班招生考試試題	
系所組別:	太空與電漿科學研究所	
考試科目:	電磁學	考試日期:0222,節次:2

※ 考生請注意:本試題不可使用計算機

II. Electric field in dielectric medium: (5 % each, total 25 %)

As shown in Fig. 2, the region between two electrodes of a parallel-plate capacitor is filled with two dielectric media 1 and 2, whose thicknesses and dielectric constants are d_1 , d_2 and ε_1 , ε_2 , respectively. The potential difference between the two electrodes is $\Delta \phi$. Find the electric fields (E_1, E_2) and electric flux densities (D_1, D_2) in each dielectric medium. Also, find the surface density of polarization charge at the interface between the dielectric media 1 and 2, σ_p .

III. Cyclotron radiation: (15%)

Radiation power W (per unit solid angle $d\Omega$) emitted from a charged particle having a uniform circular motion is expressed by the following equation. Electric charge of the particle is q and the rotation center and the rotation plane are the origin and the x-y plane, respectively as shown in Fig. 3.

$$\frac{\mathrm{d}W}{\mathrm{d}\Omega} = \frac{q^2}{16\pi^2\varepsilon_0 c^3} \left| \frac{R}{R} \times \left(\frac{R}{R} \times \frac{\mathrm{d}v}{\mathrm{d}t} \right) \right|^2.$$

Here, **R** and **v** are and the position vector of the observation point P and the velocity vector of the charged particle, respectively. Rewrite $dW/d\Omega$ as a function of ω , θ , and a.

Here, ω , θ and a are the angular frequency of the circular motion, the zenith angle of the observation point and the radius of the circular motion, respectively. [Hint: \mathbf{R}/R can be written as $\mathbf{R}/R = (\sin\theta, 0, \cos\theta)$ without loss of generality.]

编號: 58	國立成功大學103學年度碩士班招生考試試題	共3頁,第3頁
系所組別:	太空與電漿科學研究所	
考試科目:	電磁學	考試日期:0222,節次:2
and when the head of the		

※ 考生請注意:本試題不可使用計算機

IV. Interface between different media: (10 % each, total 20 %)
Two kinds of dielectric medium (1 and 2) contact at an interface. A plane

electromagnetic wave is injected perpendicularly into the interface plane. Find the reflection and transmission coefficients of the electromagnetic wave for the following situation. The reflection rate is defined as a ratio between energy fluxes the reflected wave of and the incident wave. The transmission rate is defined as a ratio between energy fluxes of the transmitted wave and the incident wave:

Use the following parameters: electric permittivity ε_1 and ε_2 , permeability $\mu_1 = \mu_2 = \mu_0$. The suffices 1 and 2 represent the two kind of the dielectric media.

V. A plane electromagnetic wave propagates in z direction in vacuum, whose x and y components of the wave electric field are written in the following forms, respectively: (15 %)

 $E_x(z, t) = f_1(z-ct) + g_1(z+ct),$

 $E_{y}(z, t) = f_{2}(z-ct) + g_{2}(z+ct).$

Here, $f_{1,2}(u)$, $g_{1,2}(u)$ are functions of only u. $c = 1/(\varepsilon_0 \mu_0)^{1/2}$.

- (i)Derive the x and y components of the wave magnetic field $B_x(z, t)$ and $B_y(z, t)$. (10 %)
- (ii) Find the z component of the Poynting vector S_z . (5%)