※ 考生請注意：本試題不可使用計十算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．Please answer the following questions：
（a）$\frac{d}{d x} y^{\sqrt{x}}=?(5 \mathrm{pts})$
（b）$\frac{d}{d x} \int_{b(x)}^{0} d y F(x, y)=?(5 \mathrm{pts})$
（c）$\frac{d}{d x} \int_{0}^{a(x)} d y F(x, y)=$ ？（ 5 pts$)$
（d）What are the first three terms of the Taylor series of $\sin x$ at $x=0$ ？（5pts）
2．（a）Solve the differential equation

$$
\frac{d V}{d x}= \pm \frac{1}{2} \frac{\sin x}{\sqrt{k^{2}-\cos x}},
$$

where $k^{2} \geq 0$ is a parameter．（ 10 pts ）
（b）Determine the integration constant by imposing that $V=0$ when $k^{2}=\cos x$ for $k^{2} \leq 1$ and the condition that V must be continuous across the $k^{2}=1$ boundary for $k^{2}>1$ ．
（5pts）
（c）Give a rough sketch of V as a function of x when k^{2} varies from 0 ，to 1 to a number larger than 1．（5pts）
3．There is a two－dimensional vector $\vec{T}=a(x, y) \hat{x}+b(x, y) \hat{y}$ in three－dimensional (x, y, z) Cartesian coordinates，where the unit vectors in x, y, z directions are \hat{x}, \hat{y} ，and \hat{z} respectively，please calculate
（a）$\vec{\nabla} T$（ 5 pts ）
（b）$\vec{\nabla} \times \vec{T}$（5pts）
（c）$\hat{z} \hat{z} \cdot \vec{\nabla} \times \vec{T}$ ，where $\hat{z} \hat{z}$ is a tensor and \cdot denotes dot product．（5pts）
4．Perform the integral $\int_{-\infty}^{\infty} d x \frac{e^{i t x}}{x^{2}+1}$ for a real value t ．（15pts）
5．（a）Please show that $f(x+c t)$ and $f(x-c t)$ are solutions to the equation

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial t^{2}}=c^{2} \frac{\partial^{2} f}{\partial x^{2}} . \tag{1}
\end{equation*}
$$

（10pts）
（b）What is the difference between these two solutions？（5pts）
（c）Show that $g=e^{i(k--\omega t)}$ is also a solution to Eq．（1）if frequency ω is a function of wave vector k ．Find that relation between ω and k ．（10pts）
（d）Using the relation obtained in（c），show that function g is a special case of function f ， i．e．，find the function f for the solution g ．（ 5 pts）

