系所組別：太空與電漿科學研究所
考試科目：應用數學

第1頁，共2頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
－Answers must be described logically and straightforwardly so that readers can follow easily．
－Calculation processes have to be described．

I．Answer the following questions（ 30 percent）：
（i）Find solutions of $x^{3}-1=0$ ．（6 percent）
（ii）Find a general solution of the following differential equation by the use of Laplace transform：

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} f(t)+3 \frac{\mathrm{~d}}{\mathrm{~d} t} f(t)+2 f(t)=\exp (-3 t), \quad f(0)=\left.\frac{\mathrm{d}}{\mathrm{~d} t} f(t)\right|_{t=0}=0, \quad \text { (8 percent) }
$$

（iii）Calculate the Fourier transform of the following functions and draw a graph $(F(\omega)$ vs $\omega)$ of each result． （ 8 points each，total 16 points）
（a）$f(t)= \begin{cases}1 & |t| \leq 1 \\ 0 & |t|>1\end{cases}$
（b）$f(t)=\exp \left(-\frac{t^{2}}{2}\right)$ ．

II．Sturm－Liouville boundary value problem：Calculate the eigen values λ and eigen functions of the following differential equation with the boundary conditions（BCs）： （Hint：Consider the three cases $\lambda>0, \lambda=0, \lambda<0$ ，separately．） $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\lambda y=0$ ，B．C．$y(0)=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=\pi}=0 . \quad$（16 percent）

III．Calculate the following definite integral by employing residue theorem．
$\int_{-\infty}^{\infty} \frac{1}{x^{6}+a^{6}} \mathrm{~d} x, \quad a>0$.
（16 percent）

系所組別：太空與電漿科學研究所
考試科目：應用數學

第2頁，共2頁

IV．（i）Find $\nabla(1 / r)(r \neq 0)$ ．Here，$r \equiv \sqrt{x^{2}+y^{2}+z^{2}}, \quad \nabla=i \partial / \partial x+j \partial / \partial y+k \partial / \partial z . i, j$ and k are basis vectors in directions of x, y and z ，respectively．（ 6 percent）
（ii）Calculate $\nabla \cdot(\nabla(1 / r))(r \neq 0$ and $r=0)$ ．Hint：Use the Gauss theorem
$\int_{\mathbf{\Omega}} \operatorname{div} f \mathrm{~d} V=\int_{\Sigma} \boldsymbol{f} \cdot \boldsymbol{n} \mathrm{d} S$ and Dirac＇s delta function $\delta(\boldsymbol{r}), \int \delta\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right) f(\boldsymbol{r}) \mathrm{d} V=f\left(\boldsymbol{r}_{0}\right)$. （6 percent）
（iii）Prove that the Green function of the Helmholtz equation $\left(\nabla \cdot \nabla+k^{2}\right) \psi(r)=0,\left(k\right.$ real）is given as $G\left(r, r^{\prime}\right)=-\frac{1}{4 \pi\left|r-r^{\prime}\right|} \exp \left(i k\left|r-^{2} r^{\prime}\right|\right)$ ，by substituting this Green function into the Helmholtz equation．
（10 percent）

V．Find the eigenvalues and normalized three eigen vectors of the matrix shown below（2 percent each，total 12 percent）．From those，find a matrix B ，that can diagonalize the matrix T by a similarity transformation（4 percent）．

$$
T=\left(\begin{array}{lll}
1 & 1 & 0 \tag{16percent}\\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

