國立成功大學 106 學年度碩士班招生考試試題

所:太空與電漿科學研究所 么

考試科目:電磁學

考試日期:0213,節次:1

第1頁,共3頁

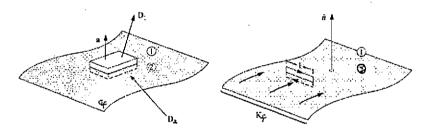
※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

• Derivation processes have to be given.

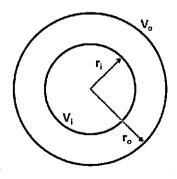
1. Maxwell's equations in the differential form are given in the following:

$$\nabla \cdot \vec{D} = \sigma_{f}, \qquad (1)$$

$$\nabla \cdot \vec{B} = 0, \qquad (2)$$


$$\nabla \cdot \vec{B} = 0, \qquad (2)$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \,, \tag{3}$$


$$\nabla \times \vec{H} = \vec{J}_{\rm f} + \frac{\partial \vec{D}}{\partial t} \,. \tag{4}$$

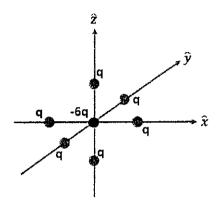
Please derive the Maxwell's equations in the integral form using the Gauss's divergence theorem and the Stokes' theorem. (8%)

2. Please derive the boundary conditions of \vec{E} , \vec{B} , \vec{D} , and \vec{H} across a boundary between two different media with surface charge density σ_I and surface current density $\vec{K_f}$ using Maxwell's equations. Make sure the boundary conditions for fields normal and tangential to the surface are given. (8%)

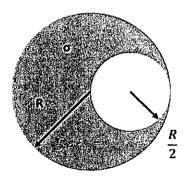
- 3. In problem 1, Maxwell's equations in the differential form are given. (a) Please use them to derive the electromagnetic wave equation in vacuum. (6%) (b) Please show that the speed of light $c = 1/\sqrt{\epsilon_0 \mu_0}$ where ϵ_0 and μ_0 are permittivity and permeability of free space, respectively. (2%)
- 4. As shown in the following figure, two concentric spheres with radii r_i and r_o have corresponding voltages V_i and V_o . Assuming that the voltage at infinity is zero. What are the voltages and electric fields at the following three regions? (a) $r < r_i$. (6%); (b) $r_i \le r \le r_o$. (6%); (c) $r_{\rm o} < r$. (6%)

編號: 61

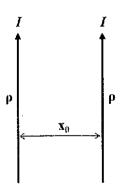
國立成功大學 106 學年度碩士班招生考試試題


系 所:太空與電漿科學研究所

考試科目:電磁學


考試日期:0213,節次:1

第2頁,共3頁

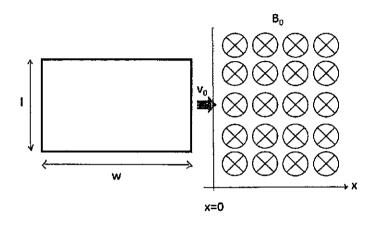

5. As shown in the following figure, there are 7 charged particles in the space. The charge of the one at the origin is -6q while charges of all the others are q and locate at $(\pm \delta, 0, 0)$, $(0, \pm \delta, 0)$, and $(0, 0, \pm \delta)$. What are the electric field and the voltage? (10%)

6. As shown in the following figure, a nonconducting solid sphere with a cavity has uniform charge density σ . The radii of the sphere and the cavity are R and R/2, respectively. The centers of the sphere and the cavity locate at origin and (R/2,0,0), respectively. What are the electric field and the voltage outside the sphere? (10%)

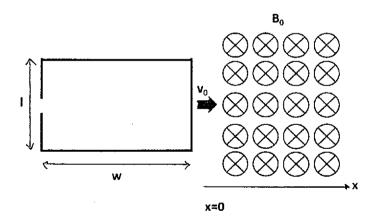
7. As shown in the following figure, two parallel wires with mass density ρ carry the same current I flowing in the same direction. The initial distance between two wires is x_0 . Please derive (a) the acceleration of each wire. (6%); (b) the equation of motion of each wire using $\vec{F} = m\vec{a}$. (6%); (c) the time when two wires crash into each other. (6%)

編號: 61

國立成功大學 106 學年度碩士班招生考試試題


系 所:太空與電漿科學研究所

考試科目:電磁學


考試日期:0213,節次:1

第3頁,共3頁

8. As shown in the following figure, a uniform magnetic field B_0 pointing into the page at x>0 is present. A rectangular ring with total resistance R enters the region of x>0 from the region of x<0 with an initial velocity $V=V_0\hat{x}$. The mass, the length and the width of the rectangular ring are m, l and w, respectively. Assume that the shape of the ring does not change. Please derive (a) the force acts on the ring. (6%); (b) the equation of motion of the ring using $\vec{F}=m\vec{a}$. (6%) (c) What's the requirement of w and l to stop the rectangular ring? (6%)

(d) What happen if there is a cut on one side of the rectangular ring as shown in the following? (2%)

