編號:

72

國立成功大學九十八學年度碩士班招生考試試題

共2頁,第1頁

系所組別: 太空天文與電漿科學研究所

考試科目: 應用數學

考試日期:0308,箭次:3

※ 考生請注意:本試題 □可 ☑不可 使用計算機

Show your calculation steps carefully. A correct answer, unsupported by calculations, explanation, or algebraic work will not receive credit; partial credit will be given for correct steps.

- 1. (15%) Solve the following ODEs:
 - (a) (7%) $y' = y + xy^2$
 - (b) (8%) $(2xy^3 + y^4) dx + (xy^3 2) dy = 0$
- 2. (15%) Solve the following initial value problem by the Laplace Transform:

$$y' = 1 - H(t-1), y(0) = 0$$

Where H(t) represents the Heaviside function and is defined to be

$$H(t) = \begin{cases} 1, & t > 0 \\ 1/2, t = 0 \\ 0, & t < 0 \end{cases}$$

[Hint: Shift rule of Laplace Transform $\mathcal{L}[H(t-a)g(t-a)](s) = e^{-as}\mathcal{L}[g](s)$ may be helpful to you]

3. (10%) Solve

$$v'' - xv' - v = 0$$

at the point x = 0 using the power series method and find the recurrence relation and the first 4 terms of the two linearly independent solutions.

4. (20%) The cosine of a matrix A is defined by copying the series for cos(x) (which always converges):

$$\cos A = I - \frac{1}{2!}A^2 + \frac{1}{4!}A^4 - \cdots$$

- (a) (10%) Suppose x is an eigenvector of matrix A and $Ax = \lambda x$. Please show that x is also an eigenvector of $\cos A$ and find its corresponding eigenvalue.
- (b) (10%) The eigenvectors of matrix $A = \frac{\pi}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ are (1,1) and (1,-1). From the eigenvectors and eigenvalues, find the matrix $\cos A$.

(背面仍有題目,請繼續作答)

編號:

72

國立成功大學九十八學年度碩士班招生考試試題

共 2 頁,第2頁

系所組別: 太空天文與電漿科學研究所

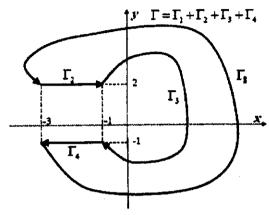
考試科目: 應用數學

考試日期:0308,節次:3

※ 考生請注意:本試題 □可 □不可 使用計算機

5. (20%) The figure shows a positively oriented closed curve Γ composed of four separate curves Γ_i , (i=1,2,3,4). In x-y plane, a vector function \vec{F} is defined as:

$$\vec{F} = (y^5 - y^3)\vec{i} + (5xy^4 - 4y - 3xy^2)\vec{j}$$



(a) (10%) Evaluate the value of integral

$$I = \oint_{\Gamma} \vec{F} \cdot d\vec{r}$$

(b) (10%) If the integral $\int_{\Gamma_1} \vec{F} \cdot d\vec{r} = 10$, evaluate the value of the integral $S = \int_{\Gamma_1} \vec{F} \cdot d\vec{r}$.

6. (a) (10%) Given f(t) = 1 - |t/2|, $-2 \le t \le 2$ and zero elsewhere, show that the Fourier transform of

$$f(t)$$
 is $F(\omega) = \sqrt{\frac{2}{\pi}} (\frac{\sin \omega}{\omega})^2$

(b) (5%) Prove Parseval relation: $\int_{-\infty}^{\infty} F(\omega)G^{*}(\omega) d\omega = \int_{-\infty}^{\infty} f(t)g^{*}(t) dt$

Where $F(\omega)$ and $G(\omega)$ are the Fourier transforms of f(t) and g(t) respectively. * denotes the complex conjugation.

[Hint: the expression of Dirac delta function $\delta(t-x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega(t-x)} d\omega$ may be helpful.]

(c) (5%) Evaluate $S = \int_{-\infty}^{\infty} \left(\frac{\sin t}{t}\right)^4 dt$ by using the Parseval relation.