编號: 73	國立成功大學一〇〇學年度碩士班招生考試試題 共 3頁·第 頁
系所組別:	熱帶植物科學研究所
考試科目:	
※ 考生請注	注意:本試題 □可 □□不可 使用計算機
Choose	e the best answer (60分, 每題3分)
1 771	
	bacterium E. coli requires simple organic molecules for growth and energy—it is therefore a: chemoautotroph. B) chemoheterotroph. C) lithotroph.
) photoautotroph. E) photoheterotroph.
	rophobic interactions make important energetic contributions to:
	binding of a hormone to its receptor protein.
	enzyme-substrate interactions.
	membrane structure.
	 three-dimensional folding of a polypeptide chain. All of the above are true.
	the 20 standard amino acids, only is not optically active. The reason is that its side chain
	alanine; is a simple methyl group B) glycine; is a hydrogen atom
) glycine; is unbranched D) lysine; contains only nitrogen
) proline; forms a covalent bond with the amino group tich of the following generalizations concerning motor proteins is correct?
	They convert chemical energy into kinetic energy.
	They convert chemical energy into potential energy.
	They convert kinetic energy into chemical energy.
D) E)	They convert kinetic energy into rotational energy. They convert potential energy into chemical energy.
	zymes are potent catalysts because they:
	are consumed in the reactions they catalyze.
	are very specific and can prevent the conversion of products back to substrates.
	drive reactions to completion while other catalysts drive reactions to equilibrium.
E)	increase the equilibrium constants for the reactions they catalyze. lower the activation energy for the reactions they catalyze.
	arch and glycogen are both polymers of:
	fructose. B) glucose1-phosphate. C) sucrose. D) α -D-glucose. E) β -D-glucose.
	Thich of the following is <i>not</i> true of all naturally occurring DNA?
B	 Deoxyribose units are connected by 3',5'-phosphodiester bonds. The amount of A always equals the amount of T.
	The ratio A+T/G+C is constant for all natural DNAs.
) The two complementary strands are antiparallel.
	Two hydrogen bonds form between A and T.
	ertain restriction enzymes produce cohesive (sticky) ends. This means that they:) cut both DNA strands at the same base pair.
B	
	content.
	 make a staggered double-strand cut, leaving ends with a few nucleotides of single-stranded DNA protruding. make ends that can anneal to cohesive ends generated by any other restriction enzyme.
E	
9. B	iological waxes are all:
) trimesters of glycerol and palmitic acid.
	 esters of single fatty acids with long-chain alcohols. trimesters of glycerol and three long-chain saturated fatty acids.
C D	
E) none of the above.
10. V	When a bacterium such as E. coli is shifted from a warmer growth temperature to a cooler growth temperature, it
	compensates by:
	 increasing its metabolic rate to generate more heat. putting longer-chain fatty acids into its membranes.
C	
) shifting from aerobic to anaerobic metabolism

D) shifting from aerobic to anaerobic metabolism. E) synthesizing thicker membranes to insulate the cell.

(背面仍有題目,請繼續作答)

编號:	73 國立成功大學一〇〇學年度碩士班	招生考试试题 共] 頁,第)頁
系所組別	: 熱帶植物科學研究所	
考試科目	: 生物化學	考試日期:0220,節次:2
※ 考生語	請注意:本試題 □可 □□不可 使用計算機	
	oid hormone response elements (HREs) are, which, when be	ound to, alter gene
	ression at the level of intron sequences; activated hormone receptor; translation	
B)	nuclear proteins; hormone, transcription	
	plasma membrane proteins; hormone; transcription sequences in DNA; receptor-hormone complex; replication	
E) :	sequences in DNA; receptor-hormone complex; transcription	
12. Wher	n a mixture of glucose 6-phosphate and fructose 6-phosphate is incubated nerase (which catalyzes the interconversion of these two compounds) unti	with the enzyme phosphohexose
mixt	ture contains twice as much glucose 6-phosphate as fructose 6-phosphate.	
	ements is best applied to this reaction outlined below? (P = 8.315 J/mol K)	-
	$(R = 8.315 \text{ J/mol} \cdot \text{K}; T = 298 \text{ K})$ Glucose 6-phosphate fructose 6-phosphate	
	ΔG^{∞} is incalculably large and negative.	
	ΔG^{∞} is -1.72 kJ/mol. ΔG^{∞} is zero.	
, .	$\Delta G^{\prime \circ}$ is +1.72 kJ/mol.	
	ΔG^{∞} is incalculably large and positive.	
net f	conversion of 1 mol of fructose 1,6-bisphosphate to 2 mol of pyruvate by formation of:	the glycolytic pathway results in a
,	1 mol of NAD ⁺ and 2 mol of ATP.	
	I mol of NADH and I mol of ATP.	
	2 mol of NAD ⁺ and 4 mol of ATP. 2 mol of NADH and 2 mol of ATP.	
E)	2 mol of NADH and 4 mol of ATP.	
	coneogenesis must use "bypass reactions" to circumvent three reactions in ic and essentially irreversible. Reactions carried out by which three of the	
	oneogenic pathway?	ie enzymes instea mast be bypassed in
	 Hexokinase Phosphoglycerate kinase 	
	3) Phosphofructokinase-1	
	 Pyruvate kinase Triosephosphate isomerase 	
A)	1, 2, 3	
	1, 2, 4	
	1, 4, 5 1, 3, 4	
	2, 3, 4	as is such los thom so
	ing seed germination, the glyoxylate pathway is important to plants becau carry out the net synthesis of glucose from acetyl-CoA.	se n'enables mem to:
B)	form acetyl-CoA from malate.	
	get rid of isocitrate formed from the aconitase reaction. obtain glyoxylate for cholesterol biosynthesis.	
E)	obtain glyoxylate for pyrimidine synthesis.	
	glycerol produced from the hydrolysis of triacylglycerides enters glycoly glucose. B) glucose-6-phosphate. C) dihydroxyacetone phospha	
D)	pyruvate. E) glyceryl CoA.	
	ich of these amino acids can be directly converted into a citric acid cycle i Tyrosine B) serine C) threonine D) glutamic acid E) pr	
18.Oxida	ative phosphorylation and photophosphorylation share all of the following	
A)	chlorophyll.	
	involvement of cytochromes. participation of quinones.	
,	proton pumping across a membrane to create electrochemical potential.	
E)	use of iron-sulfur proteins.	

编號: 73 國立成功大學一〇〇學年度碩士班招生考試試題	<u>#</u> З	頁,	第3頁
系所組別: 熱帶植物科學研究所			
考試科目: 生物化學	考試日期:()220 .	節次:2
※考生請注意:本試題 □ 可 ☑ 不可 使用計算機			
 19.The three subcellular organelles involved in the phosphoglycolate salvage pathway are: A) endoplasmic reticulum, chloroplast, and mitochondrion. B) nucleus, endoplasmic reticulum, and chloroplast. C) golgi apparatus, chloroplast, and mitochondrion. D) mitochondrion, peroxisome, and chloroplast. E) peroxisome, endoplasmic reticulum, and chloroplast. 20. An important intermediate in the biosynthetic pathway to aromatic amino acids is: A) benzoic acid. B). lactate. C) orotate. D) α-ketoglutarate. E) shikimate. 			
Applying what you known (40分, 每題10分)			
1. Shown below is a molecule of squalene. Draw lines to indicate the junctions between the isopret	ne units.		
2. What are histones and what is their principal role in chromatin structure and epigenetics?			
3. Compare transcription and reverse transcription in terms of the following characteristics:			
(a) direction of polynucleotide synthesis			
(b) nature of template			
(c) nature of primer			
(d) incorporated nucleotides			
4. Describe principles of two of the next-generation sequencing methods.			

Ęź