系所組別：工程科學系在職專班乙組
考試科目：熱傳學（專班）
※ 考生請注意：本試題不可使用計算機
I．One side of a plane wall is maintained at $100^{\circ} \mathrm{C}$ ， while the other side is exposed to a convection environment having $\mathrm{T}=10^{\circ} \mathrm{C}$ and $\mathrm{h}=12$
$\mathrm{W} /\left(\mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)$ ．The wall has $\mathrm{k}=1.2 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$ and is 40 cm thick．Calculate the heat flux through the wall．（ 10% ）

II．Derive an expression for the temperature distribution in plane wall having uniformly distributed heat source \dot{q} and one face maintained at a temperature T_{1} while the other face is maintained at a temperature T_{2} ．The thickness of the wall may be taken as 2 L ．（ 15% ） Hint：the energy equation for the problem can be written as $\frac{d^{2} T}{d x^{2}}+\frac{\dot{q}}{k}=0$ ．

III．The one－dimensional Fourier law can be written as

$$
q^{\prime \prime}=-k \frac{\partial T}{\partial z}
$$

（1）What are $q^{\prime \prime}, \mathrm{k}$ and $\partial T / \partial z ?(6 \%)$
（2）What is the meaning of the negative sign in the equation？（4\％）
（3）If the Fourier is re－written as
$q^{\prime \prime}=k \frac{\partial T}{\partial z}$,
is it correct？Why or Why not？（5\％）
IV．Explain the following terms：（ 20% ）
（1）Heat conduction equation or Heat diffusion equation
（2）Heat transfer rate
（3）Specific heat
（4）Thermal diffusivity
（5）Nusselt number

V．Answer the following questions：（ 25% ）
（1）What are the differences between heat transfer and thermodynamics？
（2）以熱傳觀點，束開釋發熱衣的禦寒效果？
（3）核電廠發生事情，為何大都是與熱傳問題有關？
（4）以熱傳觀點，來闌釋羽毛衣的禦寒效果？
（5）高功率元件，常以䱇片（fin）幫助散熱。請以熱傳觀點，開釋其理由。

VI．The temperature distribution across a wall 1 m thick at certain instant of time is given as

$$
T(x)=a+b x+c x^{2}
$$

where T is in degrees Celsius and x is in meters， while $\mathrm{a}=900^{\circ} \mathrm{C}, \mathrm{b}=-300^{\circ} \mathrm{C} / \mathrm{m}$ ，and $\mathrm{c}=-50^{\circ} \mathrm{C} / \mathrm{m}^{2}$ ． A uniform heat generation，$\dot{q}=2000 \mathrm{~W} / \mathrm{m}^{3}$ ，is present in the wall of area $10 \mathrm{~m}^{2}$ having properties $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}=40 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ ，and $\mathrm{c}_{\mathrm{p}}=4 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ ．
（1）Determine the rate of heat transfer entering the wall $(x=0)$ and leaving the wall $(x=1 m) .(8 \%)$
（2）Determine the time rate of temperature change at $\mathrm{x}=0.5 \mathrm{~m}$ ．(7%)

Hint：$\frac{\partial T}{\partial t}=\frac{k}{\rho c_{p}} \frac{\partial^{2} T}{\partial x^{2}}+\frac{\dot{q}}{\rho c_{p}}$

