編號: 121 國立成功大學 102 學年度碩士班招生考試試題 共 1 頁,第 1 頁	
系所組別:工程科學系在職專班乙組	
考試科目:熱傳學(專班)	考試日期:0223,節次:3
※ 考生請注意:本試題不可使用計算機	
I. One side of a plane wall is maintained at 100°C,	(1) What are the differences between heat transfer
while the other side is exposed to a convection	and thermodynamics?
environment having $T = 10^{\circ}C$ and $h = 12$	(2) 以熱傳觀點,來闡釋發熱衣的禦寒效果?
$W/(m^2 \cdot {}^{\circ}C)$. The wall has $k = 1.2 W/(m \cdot {}^{\circ}C)$ and	(3) 核電廠發生事情,為何大都是與熱傳問題有
is 40 cm thick. Calculate the heat flux through	亂?
the wall. (10%)	(4) 以熱傳觀點,來闡釋羽毛衣的禦寒效果?
	(5) 高功率元件,常以鰭片(fin)幫助散熱。請以
II. Derive an expression for the temperature	劫 德 期 聖 , 關 釋 其 理 山 。
distribution in plane wall having uniformly	
distributed heat source q and one face	VI. The temperature distribution across a wall 1m
maintained at a temperature T_1 while the other	thick at certain instant of time is given as
face is maintained at a temperature I_2 . The	$T(x) = a + bx + cx^2$
Hint: the energy equation for the problem can be	where T is in degrees Celsius and x is in meters
12π	while $a = 900^{\circ}$ C $h = -300^{\circ}$ C/m and $c = -50^{\circ}$ C/m ² .
written as $\frac{d}{dx^2} + \frac{q}{h} = 0$.	A uniform heat generation $\dot{a} = 2000 W/m^3$ is
	A dimonth heat generation, $q = 2000$ m m , is
III. The one dimensional Fourier law can be written	present in the wall of area 10 in having properties $= 1000 \text{ km/m}^3 \text{ km} = 40 \text{ W/m} \text{ K}$ and $a = 4 \text{ km/m}^3 \text{ K}$
as	$\rho = 1000 \text{ kg/m}$; k = 40 w/m/k, and c _p = 4 kJ/kg/k.
$ \int \int \partial T $	(1) Determine the rate of heat transfer entering the $11 (\dots 0)$ and heating the graph $(n - 1m) (20)$
$q = -\kappa \frac{1}{\partial z}$	wall $(x = 0)$ and leaving the wall $(x - 1m)$. (8%)
(1) What are q'' , k and $\partial T / \partial z$? (6%)	(2) Determine the time rate of temperature change (70)
(2) What is the meaning of the negative sign in the	at $x = 0.5$ m. (7%)
equation? (4%)	Hint: $\frac{\partial T}{\partial t} = \frac{k}{2} \frac{\partial^2 T}{\partial t} + \frac{\dot{q}}{2}$
(3) If the Fourier is re-written as	$\partial t \rho c_p \partial x^2 \rho c_p$
$q''=k\frac{\partial T}{\partial r},$	
OZ	
is it correct? why of why hot? (5%)	
IV. Explain the following terms: (20%)	
(1) Heat conduction equation or Heat diffusion	
equation	
(2) Heat transfer rate	
(3) Specific heat	
(4) I nermai diffusivity (5) Nusselt number	
(3) NUSSER NUMBER	
V. Answer the following questions: (25%)	• •