

91)學年度國立成功大學工程科學系熱傳學(學班乙組)試題共一頁碩士班招生考試工程科學所熱傳學(學班乙組)試題 第一頁

- I. Explain the following terms: (20%)
- (1) Fourier's law of heat conduction
- (2) The thermal boundary layer
- (3) Natural convection
- (4) Steady-state
- (5) Thermal resistance

- II. Answer the following questions: (20%)
- 1. What's physical meaning of Pr? How does it relate to the momentum and thermal boundary layer thicknesses?
- 2. What's the physical meaning of Biot number?
- 3. What is the Boussineq approximation?
- 4. In an exmperiment, if you want a surface to be at a constant temperature, how would you do?
- III. For a one-dimensional problem of heat conduction, derive the expression of the energy equation in steady-state condition. To derive this equation, consider a small control volume as shown in Fig. 3 and the temperature is only function of y, i.e., T = T(y). (15%)

- IV. The temperature distribution of a 1-D steady-state problem (as shown in Fig. 4) is $T = a + bx + cx^2$. At x = 0, there is a convective boundary condition. Derive the expression of h, which is the convective heat transfer coefficient. T_{∞} is the ambient temperature, and k is the thermal conductivity. (10%)
- V. Consider a steady-state heat conduction problem in a rectangular plate. Its boundary conditions are shown in Fig.5. Find the temperature solution of the plate. (20%)
- VI. Ethylene glycol is to be cooled from 60 °C to 40 °C in a 3.0-cm-diameter tube. The tube wall temperature is maintained constant at 20 °C. The glycol enters the tube with a velocity of 10 m/s. Calculate the length of tube necessary to accomplish this cooling. (15%)

$$Nu_d = 0.027 \,\mathrm{Re}_d^{0.8} \,\mathrm{Pr}^{1/3} (\nu/\nu_u)^{0.14}$$

All properties are evaluated at the average bulk-temperature (i.e., at 50 °C), except v_w which is evaluated at the wall temperature.

T, °C	ρ, kg/m	cp. kJ/kg°C	$v, m^2/s$	k, W/m°C	Pr
0	1.130.75	2.294	57.53x10 ⁻⁶	0.242	615
20	1.116.65	2.382	19.18x10 ⁻⁶	0.249	204
4()	1,101.43	2.474	8.69x10 ⁻⁶	0.256	93
60 80	1.087.66 1,077.56	2.562 2.650	4.75×10 ⁻⁶ 2.98×10 ⁻⁶	0.260 0.261 .	51 32.4

Hint: $q = \dot{m}C_{\rho}\Delta T_b = h(\pi DL)[T_w - (T_b)_{average}], \dot{m} = \rho V(\pi D^2/4)$. Re_D = VD/V.