系所組別 航空太空工程學系在職專班甲組

考試科目 航空工程概論(専班) 考試日期:0306・節次:3

※ 考生請注意:本試願 ▽「□ □不可 使用計算機

- The atmosphere of Jupiter is essentially made up of hydrogen H2. For H2 the specific gas constant is 4157 J I Kg·K. The acceleration of gravity on Jupiter is 24.9 m/s² Assuming an isothermal atmosphere with a temperature of 150 K and assuming that Jupiter has a definable surface, calculate the altitude above that surface where the pressure is one-half the surface pressure. (15%)
- An airplane is flying at a velocity of 130 mile /hour at a standard altitude of 5000 ft. At a point on the wing, the pressure is 1750.0 lbf / ft² Calculate the velocity at that point, assuming incompressible flow. (15%)
 Note: The density and pressure at 5000 ft are ρ = 2.0482×10⁻³ slug / ft²
 and P = 1760.9 lbf / ft²
- Describe the differences in the effects on wing lift from trailing edge flap deflection and from leading edge devices. (20%)
- 4. (25%) Explain briefly the following terms and concepts:
 - (a) strength and stiffness,
 - (b) CNS/ATM
 - (c) Fatigue failure
 - (d) Composite materials
 - (e) Creep and relaxation
- 5. (12%) Based on Newton's second law, derive the equations of motion in the directions parallel and perpendicular to the flight path, respectively, for an airplane in climbing flight with a climbing angle θ.
- 6. (13%) Consider an airplane of speed V in a level turn of radius R and with a roll angle ϕ . Define the lift load factor n = L/W. Show that the turn radius can be expressed as

$$R = \frac{V^2}{g\sqrt{n^2 - 1}} \qquad \text{(Note: } W = mg\text{)}$$