編號:

198

國立成功大學九十九學年度碩士班招生考試試題

共 3 頁,第/頁

系所組別: 電機工程學系在職專班甲組

考試科目: 半導體概論(專班)

考試日期:0306,節次:3

※ 考生請注意:本試題 ☑可 □不可 使用計算機

Some physical constants, diagrams and formula for your reference:

$$e = 1.602 \times 10^{-19} \text{ C}$$
, electron concentration $n = N_c \exp\left[-\left(E_c - E_F\right)/kT\right]$

Boltzmann constant $k = 1.3806 \times 10^{-23} \text{J K}^{-1} = 8.6174 \times 10^{-5} \text{eV K}^{-1}$

Intrinsic electron concentration in Si at 300 K = 1.45×10^{10} cm⁻³

The variation of the drift mobility with dopant concentration in Si at 300 K

Drift mobility versus temperature for *n*-type Ge and *n*-type Si samples.

(背面仍有題目.請繼續作答)

編號:

198

國立成功大學九十九學年度碩士班招生考試試題

共多頁,第2頁

系所組別: 電機工程學系在職專班甲組

考試科目: 半導體概論(專班)

考試日期:0306: 節次 3

※ 考生請注意:本試題 □ □ □ 不可 使用計算機

- 1. Explain the following concepts: (a) intrinsic semiconductor, (b) extrinsic semiconductor, (c) formation of energy band, (d) effective mass, (e) degenerate and nondegenerate semiconductors, (f) Schottky junction and (g) ohmic contacts. (15%)
- 2. a. A Si wafer has been doped *n*-type with 10^{17} As atoms cm⁻³.
 - 1. Calculate the conductivity of the sample at 27°C.
 - 2. Where is the Fermi level in this sample at 27° C with respect to the Fermi level (E_{Fi}) in intrinsic Si?
 - 3. Calculate the conductivity of the sample at 127°C.
 - b. The above *n*-type Si sample is further doped with 9×10^{16} boron atoms (*p*-type dopant) per centimeter cubed.
 - 1. Calculate the conductivity of the sample at 27°C.
 - 2. Where is the Fermi level in this sample with respect to the Fermi level in the sample in (a) at 27° C? Is this an *n*-type or *p*-type Si? (20%)
- 3. Consider an *n*-type semiconductor and weak injection conditions. Assume that the minority carrier recombination time, τ_h , is constant (independent of injection hence the weak injection assumption). The rate of change of the instantaneous hole concentration, $\partial p_n / \partial t$, due to recombination is given by

$$\frac{\partial p_n}{\partial t} = -\frac{p_n}{\tau_h} \tag{1}$$

The net of increase (change) in P_n is the sum of the total generation rate G and the rate of change due to recombination, that is,

$$\frac{dp_n}{dt} = G - \frac{p_n}{\tau_h} \tag{2}$$

By separating the generation term G into thermal generation G_0 and photogeneration G_{ph} and considering the dark condition as one possible solution, show that the relationship for the excess carriers under photogeneration and recombination is given by

編號:

198

國立成功大學九十九學年度碩士班招生考試試題

共3頁,第3頁

系所組別: 電機工程學系在職專班甲組

考試科目: 半導體概論(專班)

考試日期:0306, 節次:3

※ 考生請注意:本試題 ☑可 □不可 使用計算機

$$\frac{d\Delta p_n}{dt} = G_{ph} - \frac{\Delta p_n}{\tau_h}$$
 [3]

What are the assumptions inherent in Equation 3? (15%)

- 4. Sketch an ideal energy band diagram for nP straddling heterojunction. The capital letter N means the material has larger bandgap (i.e. material bandgap P > n). Indicate the conduction band, valence band, Fermi level, ΔEc , ΔEv and build potentials $V_{bi\,n}$ and $V_{bi\,P}$. (20%)
- 5. Calculate the flat band voltage for an MOS capacitor with following conditions: silicon substrate doping $N_a = 10^{16}$ cm⁻³, silicon dioxide thickness 500 Å, and n+ ploysilicon gate (Φ_{ms} = -1.1 eV) with an equivalent trap charge of Q_{ss} = 10^{11} electronic charges per cm² at the oxide-silicon interface. (permittivity of silicon dioxide is 3.45×10^{-13} F/cm) (15%)
- 6. Describe how (a) phonon absorption (b) phonon emission in photon absorption process in an indirect bandgap semiconductor. (15%)