共 / 頁,第/頁

編號: 103 系所:機械工程學系在職專班乙組

科目:材料力學(專班)

本試題是否可以使用計算機: □可使用 , □不可使用 (請命題老師勾選)

1. We often use the maximum distortional energy theory (von-Mises theory) to design machine elements. Please briefly describe this theory. (10%)

- 2. What is the proportional limit in the stress-strain diagram? (5%)
- 3. What are the axial, torsion, and bending rigidities of a slender member? (15%)
- 4. What differences between the string and beam? (5%)
- 5. Give the definition of the statically indeterminate problem in structural analysis. (10%)
- 6. What is the product moment of inertia I_{xy} of the cross section shown in Figure 1. (5%)

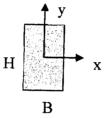
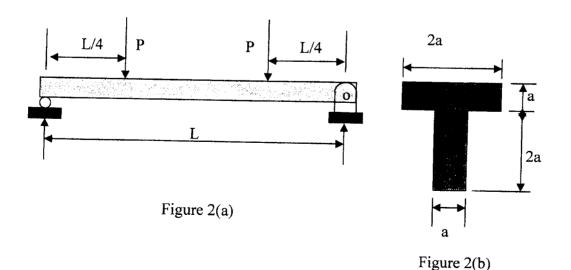



Figure 1

- 7. Consider a beam under four-point bending shown in Figure 2(a). The beam is built by bonding two blocks with size a x 2a (Figure 2(b)). The Young's modulus and shear modulus of elasticity of the beam material are E and G, respectively.
 - (1) Plot the shear force and bending moment diagrams. (10%)
 - (2) Compute the maximum bending stress σ_{max} in tension. (10%)
 - (3) Compute the maximum shearing stress τ_{max} in the beam. (10%)
 - (4) Compute the shearing stress τ at the interface of two blocks. (5%)
 - (5) Determine the ratio $\sigma_{\text{max}} / \tau_{\text{max}}$ when Poisson's ratio $\nu = 1/3$. Can we ignore the shearing stress in the beam design? Why? (15%)

