編號:

411

國立成功大學九十七學年度碩士班招生考試試題

.

系所: 公共衛生研究所甲乙組在職生、一般生

科目:生物統計學

本試題是否可以使用計算機:

□可使用 , □不可使用

(請命題老師勾選)

考試日期:0302,節次:2

Problem 1: This study aimed to evaluate the diagnostic value of the whole-blood interferon γ (INF-) assay for the diagnosis of latent tuberculosis (TB) infection. Table 1 shows the INF- γ assay and tuberculin skin test (TST) data for the group with low risk of infection (n=99).

Table 1

		TST		
		Positive	Negative	Total
IFN-γ	Positive	4	0	4
	Negative	46	49	95
	Total	50	49	99

Please compute the Kappa statistics. (20 points)

Problem 2: This study aimed to determine the utility of APOE gene ε4 allele in the diagnosis of Alzheimer's disease (AD). Table 2 shows the data. The sample included 2188 patients with dementia.

Table 2

I dulc 2			
APOE	Pathological Diagnosis		
Genotype			
	Alzheimer's	Other causes	
	disease	of dementia	
≥1 e4 alleles	1142	133	
No e4 alleles	628	185	
Total	1770	418	

Please compute the sensitivity and specificity of the presence of an APOEe4 allele, with pathologically confirmed Alzheimer's disease used as the standard. (20 points)

編號: 411

國立成功大學九十七學年度碩士班招生考試試題

共る夏,第2頁

系所:公共衛生研究所甲乙組在職生、一般生

科目:生物統計學

本試題是否可以使用計算機:

□ 可使用 , □ 不可使用

(請命題老師勾選)

考試日期:0302,節次:2

Problem 3: Table 3 presents a two by two contingency table.

Table 3

Group	Outcome		
	Presence	Absence	Total
Nonexposed	<i>Y</i> ₁	n_1-Y_1	n_1
Exposed	Y ₂	n_2-Y_2	n_2
Total	$Y_1 + Y_2$	$n_1 + n_2 - Y_1 - Y_2$	$n_1 + n_2$

(a) Assume that $Y_1 \sim Binomial(n_1, P_1)$ and $Y_2 \sim Binomial(n_2, P_2)$ such that

$$Pr(Y_1 = y_1) = \binom{n_1}{y_1} P_1^{y_1} (1 - P_1)^{n_1 - y_1}, y_1 = 0, ..., n_1;$$

$$Pr(Y_2 = y_2) = \binom{n_2}{y_2} P_2^{y_2} (1 - P_2)^{n_2 - y_2}, y_2 = 0, ..., n_2$$

In addition, the Y_1 and Y_2 are statistically independent. Please show that when $P_1 = P_2$

$$\Pr(Y_{1} = y_{1} \mid Y_{1} + Y_{2} = t) = \frac{\binom{n_{1}}{y_{1}} \times \binom{n_{2}}{y_{2}}}{\binom{n_{1} + n_{2}}{t}}$$

where $t = y_1 + y_2$. (15 points)

We want to test whether the exposure is associated with the presence of the outcome. The null hypothesis is that $H_0: P_1 = P_2$ and the alternative hypothesis is either one-tailed or two-tailed. The Fisher's exact test uses the conditional distribution derived in (a) for computing p-value.

(b) Table 4 shows a data set taken from an experimental study. Please compute the probability of $Pr(Y_1 \le 1 \mid Y_1 + Y_2 = 5)$ under the null hypothesis (i.e., p-value). (15 points)

編號:

411

國立成功大學九十七學年度碩士班招生考試試題

共 3 頁,第3頁

系所: 公共衛生研究所甲乙組在職生、一般生

科目:生物統計學

本試題是否可以使用計算機:

□ 有使用 , □ 不可使用

(請命題老師勾選)

考試日期:0302, 節次:2

Table 4

Table 4						
Group	Cured					
	Yes	No	Total			
Control	$Y_1 = 1$	$n_1 - Y_1 = 9$	$n_1 = 10$			
Intervention	$Y_2 = 4$	$n_2 - Y_2 = 6$	$n_2 = 10$			
Total	$Y_1 + Y_2 = 5$	$n_1 + n_2 - Y_1 - Y_2 = 15$	$n_1 + n_2 = 10$			

Problem 4: Let X represent the outcome variable in a two parallel group study and it is a continuous random variable. Let $X_1,...,X_m$ represent a sample from the first group (e.g., the intervention group) and $X_{m+1},...,X_m$ represent a sample from the second group (e.g., the control group). Assume that $X_1,...,X_m$ follow a probability distribution $F_1(x)$ and $X_{m+1},...,X_{m+n}$ follow a probability distribution $F_2(x)$. We want to test whether $F_1(x) = F_2(x)$. Let $R_1,...,R_m$ denote the ranks of the first group, and $R_{m+1},...,R_{m+n}$ denote the ranks of the second group when $X_1,...,X_m$ are ordered by their values. Under the null hypothesis of

 $X_1,...,X_m$, $X_{m+1},...,X_{m+n}$ are ordered by their values. Under the null hypothesis of $H_0:F_1(x)=F_2(x)$, please show that the Wilcoxon rank sum statistics for the first group given as

$$S_1 = R_1 + \ldots + R_m$$

has mean and variance, respectively, as follows:

$$E(S_1) = \frac{m \times (m+n+1)}{2}$$
 (15 points)

and

$$Var(S_1) = \frac{mn(m+n+1)}{12} \cdot (15 \text{ points})$$

Hint: S_1 is the sample total of ranks obtained from a population of ranks consisting of $\{1, ..., m+n\}$ and the sample size is m.