編號:

412

國立成功大學九十八學年度碩士班招生考試試題

共之頁,第一頁

系所組別: 公共衛生研究所甲乙組在職生、一般生

考試科目: 生物統計學

考試日期:0308,節次:2

※ 考生請注意:本試題 □ □ 不可 使用計算機

1. (25%)

Assume that a random variable X follow a normal distribution with mean μ and standard deviation σ . A sample of size n is randomly drawn and the data are represented by $x_1, x_2, ..., x_n$.

- (1) Please state the sampling distribution of the sample mean $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$. (10 %)
- (2) Please use the sampling distribution of the sample mean and explain a $(1-\alpha)\times 100\%$ confidence interval for μ where $1-\alpha$ is the so-called confidence level and is usually set at 0.95 (i.e., $\alpha = 0.05$). (15 %)
- 2. (25%)
- (1) Please define the p-th percentile of a probability distribution and (10 %)
- (2) Please explain how to construct a quantile-quantile plot from the observed data assumed to follow a specific probability distribution such as a normal distribution. (15 %)

編號:

412

國立成功大學九十八學年度碩士班招生考試試題

共 之頁 第 頁

系所組別: 公共衛生研究所甲乙組在職生、一般生

考試科目: 生物統計學

考試日期:0308,節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

3. (25%)

- (1) What is type I error and what is type II error? Please explain. (10%)
- (2) Let α represent the probability of the type I error and β represent the probability of the type II error. Please use an example to explain sample size estimation under the framework of hypothesis testing for statistical inference. (15%)

4. (25%)

Let ln(Y)=X where X follows a normal distribution with mean μ and standard deviation σ .

- (1) Please derive the median and mean of Y. (10%)
- (2) Please show that as σ increases, the mean of Y is further away from its median. (5%)
- (3) Please use the result in (2) to explain why mean is Not an appropriate measure of centrality when the distribution is asymmetric. (10%)

Hint: The probability density function of a normal distribution with mean μ and standard deviation σ is given as

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \times e^{-(1/2)x\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty.$$