89 學年度 國立成功大學 化学 系综合化学 試題 共 3頁 項土班招生考試 進修硕士專城所 然后化学 試題 第 / 頁 A1. (5%) Titration of 50.00 mL of 0.05251 M Na₂C₂O₄ required 38.71 mL of a potassium permanganate solution: $$2MnO_4^{-1} + 5H_2C_2O_4 + 6H^{+} \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$ Calculate the molarity of the KMnO4 solution. - A2. (7%) The arsenic in a 9.13 g sample of pesticide was converted to AsO₄3- and precipitated as Ag₃AsO₄ with 50.00 mL 0.02105 M AgNO₃. The excess Ag' was then titrated with 4.75 mL of 0.04321 M KSCN Calculate the percentage of As₂O₃ in the sample. - A3 (7%) Iron(III) reacts with SCN to form the red complex, Fe(SCN)² (a) Please sketch a photometric titration curve for Fe(III) with SCN ion when a photometer with a green filter is used to collect data. b) Explain why is a green filter used? - A4. (6%) Why are the liquid stationary phases of gas-chromatography often bonded and cross-linked? 4% I.1 Draw the molecular structure and determine the point group for each of the following species. (a) PF₅ (b) H₂O₂ B_2 - 9% L2. Choose and explain - 12a Which is paramagnetic? C₂ or 1.2b Which ligand is the stronger field ligand? O or OH- - 12c Which would be expected to be more intense electronic transitions? $^3A_{2g} \rightarrow {}^3T_{2g}$ in NiCl₆⁴⁻ or $^3T_1 \rightarrow {}^3T_2$ in NiCl₄²⁻ (tetrahedral) - 6% 1.3 Determine the number of unpaired electrons and the crystal field stabilization energy for each of the following. (a) [Fe(CN)₆]³⁻ (b) [CoF₆]⁴⁻ - 3% I.4 Which of following configurations are expected Jahn-Teller distortions in an octahedral field? (a) d³ (b) d⁴ (LS) (c) d⁵ (HS) (d) d⁶ (LS) (e) d⁷ (HS) (f) d⁸ (g) d⁹ - 3% 1.5 Find an organic fragment isolobal with Mn(CO)₅. ## 89 學年度國立成功大學 化学 系 综合化学 試題 共 3頁 第 2 頁 P.1 Please explain the following terms: (10%) - (a) photoelectric effect - (b) Heisenberg's uncertainty principle - (c) orbital - (d) Pauli exclusion principle - (e) ionization energy - P.2 For the reaction between gaseous chlorine and nitric oxide, $2NO + Cl_2 \rightarrow 2NOCl$ it is found that doubling the concentration of both reactants increases the rate by a factor of eight, but doubling the chlorine concentration alone only doubles the rate. What is the order of the reaction with respect to nitric oxide and chlorine? (6%) P.3 One mole of an ideal gas at 300 °K expands isothermally and reversibly from 5 to 20 liters. Please calculate the work done and the heat absorbed by the gas. What is ΔE and ΔH for the process? (R = 1.987 cal mol⁻¹ K⁻¹) (9%) ## 图 學年度 國立成功大學 化学 系 净合化学 試題 共 3 頁 有 3 頁 有 4 3 頁 有 4 3 頁 第 3 頁 - O-1. Give the major product for each of the following reactions. (4%) - (a) CH₃OH + O H⁺ - (b) NO₂ 1) Sn, HCl 2) NaNO₂, HCl - O-2. Arrange the following quantities in the order of decreasing. (4%) - (a) Basicity: (1) CH₃CONH₂ (2) CH₃NH₂ (3) C₆H₅NH₂ - (b) boiling point: (1) CH₃CH₂CH₂CH₃ (2) CH₃CH₂CH₂CH₂OH (3) C₂H₅OC₂H₅ - O-3. When benzene is treated with propene and sulfuric acid, two different monoalkylation products are possible. Draw their structures. Which one do you expect to be the major product? (4%) - O-4. Explain each difference in reactivity toward nucleophiles. (4%) - (a) Esters are less reactive than ketones - (b) Primary alkyl halides are less reactive than tertiary alkyl halides - O-5. Menthyl chloride reacts with sodium ethoxide in ethyl alcohol to give a single product as shown. By contrast, menthyl chloride is treated with 80% aqueous ethanol to give an additional, major, product as shown. Explain. (4%) O-6. Compound **A**, C₄H₁₀O, is oxidized with PCC to compound **B** which gives a positive Tollens'test and has a strong IR band at 1725 cm⁻¹. The ¹H NMR spectrum of compound A is shown below. What are the structures of compound **A** and compound **B**.