(E) the pH of the solution does not change.

(B) 4s

(A) 3d

		选择规 (第 1、2 二規各 2 分,其餘每題 3 分) ll of the following have resonance structures except					
	(A) $CH_3CO_2^-$		(C) NO ₃	(D) H ₂ N	NH ₂ (E) O ₃		
2.	Which of the following has the highest lattice energy?						
	(A) KI	(B) MgO	(C) NaCl	(D) BaO	(E) CaO		
3.	What is the shape of IF ₄ ⁺ ?						
	(A) square plan	ar (B) trigo	onal bipyramidal	(C) seesaw	(D) tetrahedral	(E) T-shaped	
4.	All of the following are paramagnetic except						
	(A) O ₂ ⁺	(B) O ₂	(C) N_2^{2+}	(D) O ₂	(E) N_2^{2-}		
5.	The overall nucleosynthesis of ⁶⁰ Co results from bombardment of a certain element with 2 neutrons along						
	with β emission. Identify the starting element.						
	(A) ⁵⁸ Fe	(B) ⁵⁹ Co	(C) ⁶⁰ Fe	(D) ⁵⁹ Fe	(E) ⁵⁸ Ni		
6.	For the oxides CrO, Cr ₂ O ₃ , and CrO ₃ , which of the following is true?						
	 (A) CrO is basic, Cr₂O₃ is amphoteric, and CrO₃ is acidic. (B) All the oxides are basic. (C) CrO and Cr₂O₃ are acidic and CrO₃ is basic. (D) All the oxides are acidic. 						
		ic, and Cr_2O_3 and		· ((D) All the oxides are a	cidic.	
7.	25. The products of the reaction of Al ₄ C ₃ (s) with water are						
	(A) $Al(OH)_3(s)$ and $C_2H_4(g)$ (B) $Al_2O_3(s)$ and $CH_4(g)$ (C) $Al(OH)_3(s)$ and $CH_4(g)$				l CH ₄ (g)		
	(D) $Al_2O_3(s)$ and	$d C_2H_2(g)$	(E) Al(OH) ₃	(s) and $C_2H_2(g)$			
8.	For a 0.10 M solution of a weak acid, HA, with pKa = 10, which of the following is true?						
	(A) $[HA] = [H_3]$			$A] = Ka \qquad (D)$		$[A] \neq [H_3O^+]$	
9.	Which of the following are allotropes?						
	(A) boron carbide and carbon (B) silicon, carbon, and C ₆₀ (C) graphite, diamond, and C ₆₀						
	(D) carbon mor	noxide and carbo	n dioxide (E	2) silicon carbide,	, diamond, and C ₆₀		
10.	When ammonium chloride is added to NH ₃ (aq),						
	(A) the pH of the solution decreases. (B) the equilibrium concentration of NH ₂ (a) decreases.				B) the pH of the solution	on increases.	
	(C) the equilibr	ium concentratio	n of NH2(aa) dec	reases (D) the K. increases		

(背面仍有題目,請繼續作答)

(D) 3p

(E) 4d

11. The three quantum numbers for an electron in a hydrogen atom in a certain state are

n = 4, ℓ = 2, m_{ℓ} = 1. The electron is located in what type of orbital?

(C) 4p

90 學年度 國立成功大學 碩士班招生考試 化學系 系 頁 綜合化學 試題 進修碩士專班 所 2 頁

- 12. In the most plausible Lewis structure of XeOF2, there are
 - (A) 2 single bonds, 1 double bond, and 2 lone pairs of electrons around Xe.
 - (B) 2 single bonds, 1 double bond, and 3 lone pairs of electrons around Xe.
 - (C) 3 single bonds and 2 lone pairs of electrons around Xe.
 - (D) 3 single bonds and 1 lone pair of electrons around Xe.
 - (E) 2 single bonds, 1 double bond, and 1 lone pair of electrons around Xe.
- 13. Which one of the following statements is incorrect?
 - (A) For a one-dimensional particle in a box, the separation between neighboring energy levels decreases as the length of the container increases.
 - (B) For a one-dimensional particle in a box, as the mass of the particle becomes larger the separation between neighboring energy levels increases.
 - (C) For a one-dimensional particle in a box, the separation between neighboring energy levels becomes zero when the walls of the box are infinitely far apart.
 - (D) Argon atoms in a cylinder can be treated as though their translational energy was not quantized.
 - (E) A billiard ball on a table has a completely negligible zero-point energy.
- 14. The pH of 0.80 M benzenesulfonic acid is 0.51. What is the percent ionization of benzenesulfonic acid?
 - (A) 5.0%
- (B) 51%
- (C) 39%
- (D) 64%
- (E) 25%

- 15. Which of the following is true?
 - (A) An electron in an s-orbital has a zero probability of being found at the nucleus.
 - (B) A p-orbital has a spherical boundary surface.
 - (C) An electron in a p-orbital has zero probability of being found at the nucleus.
 - (D) A 2s orbital has one nodal plane.
 - (E) An s-orbital becomes more dense as the distance from the nucleus increases.
- 16. The rate law for the following mechanism is

$$ClO^{-}(aq) + H_2O(l) \rightarrow HOCl(aq) + OH^{-}(aq)$$

K, fast

 $\Gamma(aq) + HOCl(aq) \rightarrow HOI(aq) + Cl^{-}(aq)$

k₁, slow

 $HOI(aq) + OH^{-}(aq) \rightarrow OI^{-}(aq) + H_2O(1)$

k₂, fast

- (A) rate = $k_1 \cdot K[ClO^-][I^-]$
- (B) rate = $k_1 \cdot K[ClO^-][I^-][OH^-]^{-1}$
- (C) rate = $k_1 \cdot k_2 \cdot K[ClO^-][I^-]$

- (D) rate = $k_1[I][HOC1]$
- (E) rate = $k_1 \cdot K[ClO^-][I^-][OH^-]$
- 17. Rhodium lies below cobalt in the periodic table. What is the d-electron configuration of [Rh(CN)₆]³-?
 - (A) t_{2g}^{5}
- (B) t_{2p}^{6}
- (C) $t_{2g}^{5}e_{g}^{2}$ (D) $t_{2g}^{4}e_{g}^{1}$
- (E) $t_{2g}^{4}e_{g}^{2}$
- 18. If $\Delta G^{\circ} = -27.1 \text{ kJ}$ at 25°C for the reaction: $CH_3COO^-(aq) + H_3O^+(aq) \rightarrow CH_3COOH(aq) + H_2O(aq)$ calculate the value of the equilibrium constant for this reaction at 298 K.
 - (A) 1.01
- (B) 1.78×10^{-5}
- (C) 1.15×10^{-11}
- (D) 9.89×10^{-1}
- (E) 5.63×10^4

19. Consider the following reaction: $2HI(g) \rightarrow H_2(g) + I_2(g)$

At 298 K, $K_c = 1.3 \times 10^{-3}$, whereas at 783 K, $K_c = 2.2 \times 10^{-2}$. Which of the following is true?

- (A) The reaction is exothermic. (B) At 783 K, more HI(g) is produced. (C) At 298 K, $K_p = 3.2 \times 10^{-2}$
- (D) $K_p = K_c$ at both temperatures. (E) At 298 K, the reaction is likely to be spontaneous.
- 20. The standard voltage of the cell: $Pt \mid H_2(g) \mid H^+(aq) \mid Cl^-(aq) \mid AgCl(s) \mid Ag(s)$ is 0.22 V at 25°C. Calculate the equilibrium constant for the reaction below.

 $2AgCl(s) + H_2(g) \rightarrow 2Ag(s) + 2H^+(aq) + 2Cl^-(aq)$

- (A) 2.7×10^7
- (B) 1.7×10^3
- (C) 5.2×10^3
- (D) 7.4
- (E) 3.7
- 21. Calculate the standard entropy of fusion of ethanol at its melting point, 159 K. The standard molar enthalpy of fusion (in J·K⁻¹·mol⁻¹) of ethanol at its melting point is 5.02 kJ·mol⁻¹.
 - (A) +5.02
- (B) -44.0
- (C) -31.6 J
- (D) -5.02
- (E) +31.6
- 22. Calculate ΔG° for the decomposition of mercury(II) oxide at 298 K.

 $2HgO(s) \rightarrow 2Hg(l) + O_2(g)$

Assume ΔH_f° of HgO(s) is -90.8 kJ·mol⁻¹; S° of HgO(s), Hg(l), and O₂(g) are 70.3, 76.0, and 205.1 J·K⁻¹·mol⁻¹, respectively.

- (A) 46.2 kJ
- (B) -4.5 kJ
- (C) +246.2 kJ
- (D) -17.1 kJ
- (E) + 117.1 kJ
- 23. The atomic radius of zinc is 137 pm. Estimate its density, given that the metal has a face-centered-close-packed structure. (Zn = 63.5)
 - $(A) 4.49 \text{ g.cm}^{-3}$
- (B) 14.0 g.cm^{-3}
- (C) 7.47 g.cm^{-3}
- (D) 19.2 g.cm⁻³
- (E) 10.2 g.cm⁻³
- 24. If 2.00 mol of an ideal gas at 300 K and 3.00 atm expands from 6.00 L to 18.00 L and a final pressure of 1.20 atm, isothermally and reversibly, which of the following is correct?
 - (A) w = -5.48 kJ, q = -5.48 kJ, $\Delta U = -11.0 \text{ kJ}$
- (B) $w = -5.48 \text{ kJ}, q = +5.48 \text{ kJ}, \Delta U = 0$
- (C) $w = -3.65 \text{ kJ}, q = +3.65 \text{ kJ}, \Delta U = 0$
- (D) $w = +3.65 \text{ kJ}, q = +3.65 \text{ kJ}, \Delta U = +7.30 \text{ kJ}$
- (E) w = +5.48 kJ, q = +5.48 kJ, $\Delta U = +11.0 \text{ kJ}$

- 25. Name the following compound.
 - (A) 1-methyl-3,3-dichlorocyclohexane
- (B) 1-methyl-5,5-dichlorocyclohexane
- (C) 1,1-dichloro-5-methylcyclohexane
- (D) dichlorocyclohexane-3-methyl
- (E) 1,1-dichloro-3-methylcyclohexe
- 26. What major product(s) is (are) obtained from the following reaction?

NH₂ HNO₃

- (A) ortho-nitroaniline
- (B) meta-nitroaniline
- (C) para-nitroaniline
- (D) ortho-nitroaniline and para-nitroaniline
- (E) ortho-, meta-, and para-nitroaniline

(背面仍有題目,請繼續作答)

90 學年度 國立成功大學 碩士班招生考試 化學系 綜合化學 試題 進修碩士專班 頁

27.	When ethene is bubbled through bromine water, the solution is decolorized	l. Which of the following is true
	regarding this reaction?	-

- (A) Br₂ acts as a nucleophile.
- (B) Br₂ acts as an electrophile.
- (C) The first step is the removal of a hydrogen atom to form (C₂H₃)⁻.
- (D) The Br ion attacks at the same face of the bromonium ion.
- (E) Br₂ attacks the carbons of the double bond in one step.
- 28. If 2-bromooctane rotates the plane of polarized light to the right while the product rotates the plane of polarized light to the left, which of the following is true?
 - (A) This is an example of an electrophilic substitution.
- (B) The reaction occurs by an S_N1 mechanism.
- (C) This is an example of an elimination reaction.
- (D) This is an example of an addition reaction.
- (E) The reaction occurs by an S_N2 mechanism.
- 29. Which of the following compounds is the strongest acid?
- (B) ÇH₂OH
- (C)
- (E) C₂H₅OH
- 30. Predict the product of the reaction of acetic acid with dimethylamine.
 - (A) CH₃CONH₂
- (B) CH₃CON(CH₃)₂
- (C) no reaction occurs

- (D) CH₃CONH(CH₃)₂⁺
- (E) CH₃CONHCH₃
- 31. Predict the product of the following reactions.

- 32. What is the splitting pattern for indicated hydrogen atom in the ¹H NMR spectrum? (A) singlet (B) doublet (C) triplet (D) quartet
- 33. Which of the following compounds give a singlet with 3 hydrogens at about 2.0 ppm in the ¹H-NMR spectrum?
 - (A) HCO₂CH(CH₃)₂
- (B) CH₃OCH₂CH₃
- (C) CH₃CH(OH)CH₂CHO

- (D) CH₃COCH₂CH₃
- (E) CH₃CH=CHCH₃
- 34. What is the most likely structure for compound X that has the molecular formula, C_5H_8O , and an IR spectrum with a peak at 1710 cm⁻¹, but no peak at 1650 cm⁻¹?
- (C) =0
- (D) CH₃CH=CHCH₂CHO (E) CH₃CH=CHCH₂CH₃